
Secure Replication for Client-centric Data Stores
Kristof Jannes

imec-DistriNet, KU Leuven
Leuven, Belgium

kristof.jannes@kuleuven.be

Bert Lagaisse
imec-DistriNet, KU Leuven

Leuven, Belgium
bert.lagaisse@kuleuven.be

Wouter Joosen
imec-DistriNet, KU Leuven

Leuven, Belgium
wouter.joosen@kuleuven.be

ABSTRACT
Decentralized, peer-to-peer systems using Conflict-free Replicated
Data Types (CRDTs) can offer a more privacy-friendly alternative
to centralized solutions that are often used by Big Tech. However,
traditional CRDTs assume that all replicas are trusted, which is not
necessarily the case in a peer-to-peer system. This paper presents a
protocol for secure state-based CRDTs which provide fine-grained
confidentiality and integrity by using encryption per field in every
(sub)-document. Our protocol guarantees Strong Eventual Consis-
tency despite any Byzantine replicas. It provides a fine-grained,
dynamic membership and key management system, without violat-
ing Strong Eventual Consistency or losing concurrent updates. Our
evaluation shows that the protocol is suitable for use in interactive,
collaborative applications.

CCS CONCEPTS
• Security and privacy→ Distributed systems security; • Net-
works→ Peer-to-peer protocols.

KEYWORDS
Byzantine fault tolerance, CRDTs, eventual consistency
ACM Reference Format:
Kristof Jannes, Bert Lagaisse, and Wouter Joosen. 2022. Secure Replication
for Client-centric Data Stores. In 3rd International Workshop on Distributed
Infrastructure for the Common Good (DICG ’22), November 7, 2022, Quebec,
QC, Canada. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3565383.3566111

1 INTRODUCTION
In the last decade, personal data has been stored in the cloud, rather
than on a local computer. From many perspectives, this is benefi-
cial for end-users. Data is accessible everywhere and collaboration
with anyone in the world is made easy. Users also do not need
to worry about data loss due to malfunction, or security breaches.
However, the reality today often does not match this ideal. Few
large tech companies and governments have access to vast amounts
of data. They can potentially misuse it and invade the privacy of
their customers or citizens to gain more money or harm political
dissidents. Moving to another vendor is often very hard, if not im-
possible. The data is also not secure, as we hear about new security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DICG ’22, November 7, 2022, Quebec, QC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9928-9/22/11. . . $15.00
https://doi.org/10.1145/3565383.3566111

breaches almost every month, and most breaches probably even go
undetected.

One solution is tomove to amore decentralized and client-centric
approach [2, 6]. The primary copy of the data is stored under the
control of the user on their local device. Data can then be replicated
peer-to-peer to all other user devices and collaborators. However, a
true peer-to-peer approach of end-user devices is not very durable
and available. Devices are often not online at the same time, do not
have a large amount of storage space, and can fail more easily or
more frequently compared to a server inside a data center.

Having some kind of centralized server can be beneficial to aid
the client-centric vision. The server is most of the time online, and
all clients can use this server to replicate their data to each other.
Even when they are never online simultaneously. Ideally, this server
does not belong to a big-tech company but is under the control of
the end user. One such approach is the Solid Platform [9]. With
Solid, every person manages their own Personal Online Datastore
(pod), either self-hosted or hosted with a third party pod-provider.
Each application will store all user data inside the user’s pod, and
the user is in control to decide who has access to it. This also makes
it easy to switch to a different application. However, the majority of
the users will not choose to host their pod themselves. Instead, they
will rely on a third-party company or the government to provide
them with a pod. This might lead to an even bigger problem of
surveillance capitalism, where few companies provide pods to their
customers and gain immediately access to even more data. These
providers with all data of a large number of users will also be an
interesting target for hackers.

The solution we propose is a hybrid approach of a peer-to-peer
network of mostly client devices and some centralized servers to
improve availability and durability. An example is shown in Figure 1.
While we trust the centralized server to keep data available, we
do not want them to read or modify the actual data. A similar
durability can be reached by creating a larger peer-to-peer network

Figure 1: Hybrid architecture of a peer-to-peer network with
a centralized server. Some users have one device, while others
have multiple. Some devices have access to the server, others
connect peer-to-peer. Some devices can be malicious.

https://doi.org/10.1145/3565383.3566111
https://doi.org/10.1145/3565383.3566111
https://doi.org/10.1145/3565383.3566111

DICG ’22, November 7, 2022, Quebec, QC, Canada Kristof Jannes, Bert Lagaisse, and Wouter Joosen

with friends or family, and replicating all data between all these
devices. However, it should be avoided that peers are able to look
into all personal data of other peers. A secure replication protocol
without having access to the plain data is required.

In such systems, eventual consistency is the most pragmatic and
only viable option. As devices are often offline, reaching a global
consensus to have strong consistency would be nearly impossible
or beyond a user-friendly time window. With strong consistency,
making updates on an offline device would be impossible, and
latency will be bad as clients are often only connected via WiFi
or a mobile network. By opting for eventual consistency, we need
a way to make sure all replicas converge to the same state after
they have received all operations. One option is to use Conflict-free
Replicated Data Types (CRDTs) [12]. CRDTs are data structures
that guarantee eventual consistency without explicit coordination.
However, classical CRDTs do not encrypt their data and are not
resilient against an attacker trying to prevent convergence.

In this paper, we present a secure state-based CRDT protocol
that extends classical state-based CRDTs with:

• Fine-grained encryption per field in every (sub)-document,
to preserve confidentiality and integrity of all user data,
• Byzantine Fault Tolerance, to guarantee Strong Eventual
Consistency even with Byzantine parties,
• Dynamic membership and fine-grained key management,
without breaking Strong Eventual Consistency, leaking extra
data, or losing updates.

Compared to other state-of-the-art approaches for secure CRDTs [1,
5], we provide the first framework to allow both concurrent data
updates, as well as concurrent updates to the access control policy.
This means that a user can share a document, or revoke access to a
document, without losing concurrent updates to that document.

Being able to change the encryption key to give or revoke access,
or to rotate the encryption key when it might be compromised is
especially important for collaborative applications. For a single user,
that user can easily coordinate a key rotation by bringing all his
devices together, halting the system, and updating the key. However,
for collaborative applications with several users, this process should
be done online, without halting the system or explicit coordination
between all collaborators. The protocol presented in this paper
supports this.

This paper is structured as follows. Section 2 describes the system-
and adversary-model. We explain our protocol for secure CRDTs in
Section 3. We evaluate our protocol in Section 4. Section 5 presents
related work. We conclude in Section 6.

2 SYSTEM MODEL
In this paper, we consider a peer-to-peer network of replicas con-
nected by an asynchronous network (Figure 1). Replicas do not
have a direct connection to every other replica, and they do not
necessarily know the full set of replicas. Messages can be delayed,
dropped, or delivered out of order, but eventually, some messages
will be received. Honest replicas will follow the protocol exactly,
Byzantine replicas can behave arbitrarily. There is no limit on the
number of Byzantine replicas. Data is structured as a JSON docu-
ment (tree) and every node has an owner, who is responsible for

deciding who has access to it. Every user has an asymmetric key-
pair, and other users are able to retrieve the public key of other
users in a secure way, outside our protocol. We assume attackers
are computationally bounded and it is infeasible to reverse the used
symmetric encryption without the secret, forge the used asymmet-
ric signatures or find collisions for the used cryptographic hash
functions.

Given this system model, our protocol provides the following
properties in the face of an active adversary:
• Confidentiality: Only users who have been given access
can read the content.
• Integrity: Only users who have been given access can edit
the content.
• Attributability: Each edit is attributable to the user who
made the modification.
• Availability: As long as at least two honest replicas are
available, they can work together and replicate correctly
between each other.
• Eventual delivery: An update delivered at some correct
replica is eventually delivered to all correct replicas.
• Strong convergence: Correct replicas that have delivered
the same updates have equivalent state.
• Termination: All method executions terminate.

The last three properties together deliver Strong Eventual Con-
sistency [12]. All the properties are kept intact, even when the
adversary has been given access to the actual content. The adver-
sary is then able to arbitrarily change the content, in a way that
might not make sense for the application or end-user. However,
all replicas will still converge to the same end-state, and the bad
updates will be attributable to the Byzantine user. The owner can
then decide to revoke access if necessary.

3 SECURE CRDTS
This section explains the protocol for our secure CRDTs. We use
the term key to refer to a key from a key-value pair. When we are
referring to cryptographic keys, we will always specify this as a
secret key (𝑘) for symmetric encryption and as a private key (𝑠𝑘) or
public key (𝑝𝑘) for asymmetric encryption or signatures.

3.1 Encrypted CRDT
We now present two encrypted CRDT protocols. These two data
structures are enough to encode a JSON tree with only maps and
values into a CRDT. Arrays are not yet supported. Figure 2a shows
an example of a JSON document and Figure 2b shows how it will
be represented internally by the protocol explained in this section.

State-based CRDTs have a merge-function, which takes as input
two states of the same CRDT and produces a new state. Mathemat-
ically, these states form a join semi-lattice, and the resulting state
of the merge function is the smallest state that is larger or equal
to the two input states according to the partial order of the lattice.
To replicate this data structure, a replica needs to send its state to
another replica. This receiving replica can use the merge function
with its local state and the received state to end up with the merged
state.

Each CRDT is associatedwith an asymmetric key-pair. The public
key is included in the CRDT and also functions as unique ID to

Secure Replication for Client-centric Data Stores DICG ’22, November 7, 2022, Quebec, QC, Canada

{
"name": "John Doe"

}

(a) JSON data

ORMap:
id: 𝑝𝑘1 (0x12)
observed:
- key: 𝐸𝑛𝑐𝑘1 ("name")

timestamp: 𝑡1
𝜎𝑠𝑘1, 𝑝𝑘𝑎, 𝜎𝑎

removed: ∅
𝜎𝑠𝑘′1

, 𝑝𝑘𝑎, 𝜎𝑎

LWWRegister:
id: 𝑝𝑘2 (0x1a)
value: 𝐸𝑛𝑐𝑘2 ("John Doe")
timestamp: 𝑡2
𝜎𝑠𝑘2, 𝑝𝑘𝑎, 𝜎𝑎

(b) CRDTs

𝐻𝑟𝑜𝑜𝑡

1: 𝐻12

2: 𝐻1 a: 𝐻2

(c) Trie

𝑠𝑘1 ← RND()
𝑝𝑘1 ← 𝑠𝑘1 ×𝐺
𝑘1 ← H(𝑠𝑘1)
𝑠𝑘2 ← HKDF𝑠𝑘1 ("name", 𝑡1)
𝑝𝑘2 ← 𝑠𝑘2 ×𝐺
𝑘2 ← H(𝑠𝑘2)

(d) Key derivations

Figure 2: Example of how a JSON data structure can be translated into a secure CRDT data structure, consisting of two CRDTs.
These CRDTs are put inside the Modified Merkle-Patricia Trie. At the right, we show how keys can be derived starting from
one root key: 𝑠𝑘1.

reference the CRDT. The private key is only shared with users who
have read-write access to the data.

LWWRegister. A LWWRegister [12] is a data structure that holds
one single value. When updating the value, the new value is associ-
ated with the current timestamp. Conflicts are resolved by selecting
the value associated with the highest timestamp. If the timestamps
are equal, the value with the lexicographically largest hash value
will be selected. Since the actual value is not used to perform a
merge, the value can be encrypted using any symmetric encryption
protocol, and the resulting data structure is still a CRDT.

ORMap. An ORMap [12] is a data structure that holds a mapping
of keys to values. In practice, it consists of two sets: the observed-
set and the removed-set. When a new key-value pair is added to
the ORMap, it is associated with a unique ID and added to the
observed-set. When removing the key-value pair, it is added to the
removed set. The key-value pairs included in the ORMap are all
pairs included in the observed-set, which are not present in the
removed-set. Thanks to the unique ID, it is possible to remove an
item and add it again later. In our protocol, the values are references
to other CRDTs: either a LWWRegister or another ORMap. The
keys, however, need to be encrypted tomaintain confidentiality. The
unique ID also has to be protected against Byzantine replicas [5].
If the replica itself is responsible for generating a new random ID,
a Byzantine replica can easily generate duplicate IDs. Therefore,
we will generate IDs deterministically based on the update. The
ID of a new key-value pair is derived from the secret key linked
to the ORMap and the key from the key-value pair. Since it must
be possible to remove and add a key-value pair again, we also add
a timestamp to each key-value pair. This timestamp is also used
as input to derive the ID. There is no need to store this ID, every
replica that has access to the secret key can compute the ID itself.
Since the IDs and keys are therefore only available to replicas that
have access to the secret key, replicas without access do not know
when two items have the same ID or key, and they will therefore
not be able to propagate the merge to the child CRDTs. Instead,
two copies of these similar key-value pairs will be stored in the
ORMap, and any other replica which does have access to the secret
key can perform the merge later. This derived ID is also the value
of the key-value pair: i.e., it is the ID of the child CRDT. Since this
ID is only available to replicas with access to the secret key, the
structure of the data is also hidden from replicas that do not have
access. This means that a replica that has no access at all, will only

be able to see how many individual ORMaps and LWWRegisters
there are, without knowing how they belong together.

Signatures. Only users who have been given access to the secret
key should be able to modify data. For this reason, every update has
to be signed by the private key of the CRDT. For a LWWRegister
one signature is sufficient. An ORMap will have one signature per
key-value pair in the observed- and removed-set. Since the public
key is also included in the CRDT, anyone can verify that an update
came from a party with access to the private key. These signatures
also ensure it is safe to use a public key as ID for the CRDT in a
context with Byzantine actors. You cannot reuse the same ID if you
do not have access, and if you do have access, using the same ID
will lead to a merge of those two CRDTs. This is equivalent to a
write to the first CRDT, which you are allowed to do as you do have
access to the private key.

Each update is also signed by the private key of the user who
makes the update. This way, each update is attributable to the user
who made the edit. The first signature (𝜎𝑠𝑘 in Figure 2b) with the
private key of the CRDT proves that you have the right to modify
it, the second signature (𝜎𝑎 in Figure 2b) with your own private key
proves who you are. If attributability is not required, it is possible
to leave out the second signature with no other changes to the
protocol.

3.2 Modified Merkle Patricia Trie
All individual CRDTs are stored inside a Modified Merkle Patricia
Trie [15] (Figure 2c). A Patricia Trie is a tree-shaped data structure
in which items associated with a key with a common prefix, will
share the same path in the tree for that prefix. A Merkle-tree [10] is
a tree-shaped data structure of hashes, in which the hash of a parent
node is based on the hash of the hashes of the child nodes. This way,
large data structures can quickly be compared or verified based on
the hash in the root node of the tree. A Modified Merkle Patricia
Trie combines both a Patricia Tree and a Merkle-tree. Each node in
the trie also carries a hash value. This data structure is also used by
Ethereum to store the state of the Ethereum blockchain [15].

The key to insert a CRDT into the trie is the ID of the CRDT.
Since the ID is also a public key, they are random and therefore
the trie will be relatively well-balanced. By using the Merkle-tree,
two replicas can efficiently exchange updates between each other.
The replicas can compare the root hash of the trie. If the hashes
match, the two tries are exactly the same, and no replication is

DICG ’22, November 7, 2022, Quebec, QC, Canada Kristof Jannes, Bert Lagaisse, and Wouter Joosen

required. If the hashes do not match, the replicas will descend in
the tree and send the hashes of the next level in the tree. This
process continues until it reaches the leaves of the tree. At this time,
the updated CRDTs can be sent and merged. This process is similar
to the replication process in OWebSync [3].

3.3 Key derivation and rotation
In the previous two sub-sections, we created a trie of individual
CRDTs which contain signatures and are partially encrypted by the
respective private and secret key of the CRDT. The secret key can be
derived from the private key by using a key derivation function, for
example HKDF [8]. This leads to one encryption key to manage per
CRDT. However, as already indicated in the paragraph on ORMaps,
the key material for children is derived from the parent key. Instead
of directly deriving the ID for a key-value pair in an ORMap, we
derive a private key. We can then use this private key to derive the
secret key and public key. This public key is also the ID. A user
who has access to the full document tree only needs access to the
private key of the root and can derive all other keys from this single
key. This makes sharing a document and key management easy. An
example of this derivation process is shown in Figure 2d.

When access is revoked from a user, the encryption key will have
to be updated. Otherwise, that user still has access to the secret
key, and would still be able to read and write. A new private key
is derived from the parent private key, the key (from the path in
the tree), and the current timestamp. Because the timestamp will
be different, a brand new private key is generated and the CRDT
can be re-encrypted with the corresponding secret key. Since the
private key is changed, the public key will also be different and the
CRDT will be stored under a different ID in the trie.

Because these CRDTs end up in different places of the trie, they
can co-exist for while. This means that replicas that are not yet
informed about the key rotation can still perform updates on the
old version, while other replicas can do updates on the new version.
Any replica that has access to both the old and the new version
knows those two CRDTs are in fact the same CRDT and can perform
a merge operation as usual. Replicas that do not have access to both
private keys are unaware they belong to the same CRDT and will
threat them as two separate CRDT structures.

3.4 Global time
Common wisdom in the field of distributed systems is that you
cannot have a global time in a distributed system. While this is true,
a course-grained global timestamp is still possible. The Ethereum
blockchain, for example, includes a timestamp in every block header.
In the Geth implementation, a timestamp of a new block has to
be larger than the timestamp of the previous block and less than
15 seconds in the future of the current time of a replica. Similar
timestamps and rules are present in other blockchains.

We use similar rules for the timestamps used in our protocol. A
timestamp may only be at most one minute in the future, otherwise,
the replica will not accept it and stop communication with the other
replica. It is the task of the replicas to keep their clocks correct.
These days, internet-connected devices automatically synchronize
their time with an internet time server and are generally correct
within one minute.

A Byzantine replica can re-use a timestamp without problem
since the lexicographic order of the hash value will then be used
as a tie-breaker. Such a replica can also get an edge over other
replicas by always using a timestamp one minute in the future.
Because its timestamps are generally larger, when an update is done
simultaneously, its update is more likely to win in the last-writer-
wins conflict resolution. This is however only possible for Byzantine
replicas that have access to the private key, i.e., replicas with write
access. Replicas without access can never change anything. Hence,
such replicas do not get to choose a timestamp. This edge that a
Byzantine replica has is only present for short intervals. On larger
intervals, the correct user intention will be kept. For example, when
user A makes a change in the morning, and another user B changes
the same data in the afternoon, the change of user B will be chosen.
User A can of course keep increasing the timestamp of his update,
but this is equivalent to a new write by a replica that has write
access, so this is allowed.

3.5 Discussion
This section presented a novel protocol for secure and confidential
CRDTs. Since replication is state-based, there are no client-specific
identifiers kept for the replication. Replicas do not need to know
every other replica. Only the replica modifying the access control
policy has to know the public key of all users with read and write
access. This makes the protocol extremely robust against network
failures and long-term disconnects [3]. Centralized servers which
are only there to improve the availability and durability of the
replication between clients, do not need any private key material
to function.

The current protocol will keep both old and new versions of a
CRDT after a key rotation forever. This is not required, once the new
version is created, the old one can be removed. With concurrent
edits, it is possible that the old version will resurface again, but after
each merge with the new version, it is removed again. After some
time, all replicas will know about the key rotation and all updates
will be applied to the new version and the old version will never
resurface. If the replica that has been revoked access by the key
rotation makes an update, it will not be merged in the new version,
but simply be discarded. This is possible due to the course-grained
timestamps. So, there is a small interval of less than a minute in
which its updates will still be accepted. For most application cases
that already opted for eventual consistency, this is acceptable.

To be able to determine whether an update from an old version
of the CRDT should be merged with the new version, a list of all
users having access to it is required. This is a list of public keys,
and only needs to be kept at the point in the JSON tree where you
give access to other users. This can be encrypted as well, as only
replicas with access to the actual data will have to use the list to
potentially merge data updates across key updates. Replicas that
decide to rotate a key can also use this list to determine who should
have access to the new key. Replicas with no access to the data do
not use this list and instead rely on the key-pair of each CRDT to
determine whether access was correctly granted.

The only cryptographic protocols used are plain symmetric en-
cryption (e.g. AES), public-key cryptography (e.g. RSA or ECDSA),
and hashing (e.g. SHA256). Furthermore, we use a key derivation

Secure Replication for Client-centric Data Stores DICG ’22, November 7, 2022, Quebec, QC, Canada

Table 1: Performance characteristics of the proposed protocol,
compared to a baseline protocol without any security.

replicas 10 20 30

Latency [s] secure CRDTs 0.62 0.76 1.59
baseline 0.56 0.50 0.54

Storage overhead secure CRDTs ×16 ×16 ×19
baseline ×4 ×4 ×4

Bandwidth [kbps] secure CRDTs 229 806 830
baseline 231 1382 4160

CPU usage [%] secure CRDTs 19 56 72
baseline 13 42 83

algorithm based on these protocols (HKDF). As these are older,
well-tested protocols, we can be more certain of their correctness
and safety. There are also more well-tested and maintained libraries
available, making it possible to implement our protocol in multiple
languages. Also, the availability of hardware support for some of
these will be good for the performance on client devices.

4 EVALUATION
We implemented the protocol in a JavaScript-based web application,
without browser plugins. For our experiments, we launched up to
30 virtual machines in the Azure public cloud (F2s_v2 with 2 vCPU
and 4 GB RAM) in the same data center. To emulate geographically
distributed users, we use the Linux tc tool to increase the network
latency between each VM to an average of 100 ms with 50 ms jitter.
Each VM contains one Chromium browser. Every client makes one
write every second. We are interested in the interactive latency, i.e.,
after one client makes an update, how long does it take for other
clients to receive it. To compare the overhead of our encrypted and
Byzantine fault-tolerant approach to a regular approach without
security, we also performed the same experiments with the open-
source version of OWebSync. OWebSync [3, 4] is a state-based
CRDT framework, in which all clients are trusted.

The performance results are shown in Table 1. We compare the
protocol from this paper (secure CRDTs) with OWebSync (baseline)
for three different numbers of active replicas. With 30 different
replicas, each making one request per second, the average latency
is 1.6 seconds before an update is visible to other replicas. With
smaller network sizes, the latency is lower. OWebSync has a much
lower latency, of 0.5 seconds, even for the larger network sizes as
no cryptographic operations are required there. Overall, the latency
is low enough to be considered interactive when multiple users
are collaboratively working on the same document. The storage
overhead of the protocol ranges from 16 to 19 times, compared to
the size of the raw data. For OWebSync this overhead is only 4
times. The overhead comes from the extra metadata required for
state-based CRDTs, but also from the signatures and encrypted
data. This leads to a bandwidth usage of 830 kbps for 30 replicas,
which is readily available on any mobile network. Interestingly, the
network usage for our baseline, OWebSync is a factor 5 higher, even
though the actual storage size is much lower. The explanation for
this is two-fold. First, OWebSync uses a Merkle-tree which is based
on the actual tree structure of the data, while our protocol uses a

much better balanced Merkle-Patricia Trie. This allows replicas to
propagate updates more fine-grained, i.e., when only a leaf in the
JSON data changes, we do not need to replicate the intermediate
nodes of the JSON tree. Second, as the latency of OWebSync is
much better, it does more traversals of the Merkle-tree, while our
protocol does less as more updates can be batched in the same tree
traversal given the higher latency. This second point also explains
the discrepancy in CPU usage for the network with 30 replicas, as
we would expect that our protocol always has a higher CPU usage
compared to a solution without any signatures and cryptography.

To conclude, we have shown that our protocol for secure CRDTs,
which tolerates Byzantine replicas, and which supports very fine-
grained access control by encrypting every field in every (sub)-
document with a different key, can be used for interactive, collabo-
rative document editing. The price to pay is a significant increase
in the size of the data (up to 19 times).

5 RELATEDWORK
This section covers related work that also tries to reach eventual
consistency in an adversarial context.

Snapdoc [7] is a collaborative peer-to-peer text editing proto-
col. New replicas can be added to the network by only sending
a snapshot of the data, including a cryptographic proof of the in-
tegrity. They can keep the edit history private for new replicas, but
new replicas can still attribute all changes, as well as verify the
integrity. This is made possible by using RSA accumulators and
Merkle-proofs. However, the new replica can only accept opera-
tions that are created after the snapshot. When an operation, not
included in the snapshot, was created before or concurrent to a
snapshot, the new replica will have to request a new snapshot and
do the verification process again.

In [14], van der Linde et al. present a system that protects against
rational misbehaving clients in causal consistency. However, servers
are considered trusted, and the focus is on detecting the Byzantine
client, rather than avoiding divergence at all.

In [1], Barbosa et al. extend standard CRDTs with cryptographic
protocols. The paper focuses on a client-server context, where
servers are unable to see the actual data. The same approach can
most likely also be used in a peer-to-peer setting. However, the pro-
vided algorithms only work as long as the same cryptographic key
is used. Switching to a new key will require coordination between
the replicas. Furthermore, the approach focuses on confidentiality
and does not tolerate an active Byzantine replica.

In [5], Kleppmann shows how operation-based CRDTs can be
adapted to tolerate Byzantine replicas. The paper lists four tech-
niques that are together sufficient to make most operation-based
CRDT tolerate Byzantine replicas. The techniques are: constructing
a hash-graph of all updates, with links to predecessor; ensuring
eventual delivery, which could be done by using the hash graph;
constructing unique IDs, which cannot be controlled by an attacker;
and ensuring that replicas only look at the predecessors of an up-
date to check the validity of it. However, the paper only focuses on
maintaining eventual consistency, and not on confidentiality.

DICG ’22, November 7, 2022, Quebec, QC, Canada Kristof Jannes, Bert Lagaisse, and Wouter Joosen

Secure Scuttlebutt [13] is a peer-to-peer event-sharing protocol,
using individual append-only logs. However, strong eventual con-
sistency can only be reached on replicas that subscribe to the same
logs. Furthermore, the append-only logs will grow without bounds.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a protocol for secure state-based CRDTs.
We have shown that Strong Eventual Consistency can be reached
even in settings with Byzantine replicas. We have also shown that
a key rotation does not have to break Strong Eventual Consistency
and that you can do this concurrently, while other users are still
making updates with the old keys. The key idea to support this is
to store all CRDTs inside a Merkle-Patricia Trie, and only allow
replicas that have access to both the old and the new secret key to
merge two different versions of the same CRDT.

In future work, we will extend this protocol with online pruning
to remove old versions which are not necessary anymore from the
trie. Arrays are also not yet supported. The current protocol uses
basic, state-of-practice cryptography. More research is required to
evaluate whether newer cryptography protocols such as attribute-
based encryption [11] can offer any benefits.

REFERENCES
[1] Manuel Barbosa, Bernardo Ferreira, João Marques, Bernardo Portela, and Nuno

Preguiça. 2021. Secure Conflict-Free Replicated Data Types. In International
Conference on Distributed Computing and Networking 2021 (ICDCN ’21). ACM,
USA, 6–15. https://doi.org/10.1145/3427796.3427831

[2] Kristof Jannes, Bert Lagaisse, and Wouter Joosen. 2019. The Web Browser as
Distributed Application Server: Towards Decentralized Web Applications in the
Edge. In Proceedings of the 2nd International Workshop on Edge Systems, Analytics
and Networking (EdgeSys ’19). ACM, USA, 7–11. https://doi.org/10.1145/3301418.
3313938

[3] Kristof Jannes, Bert Lagaisse, and Wouter Joosen. 2021. OWebSync: Seamless
Synchronization of Distributed Web Clients. IEEE Transactions on Parallel &

Distributed Systems 32, 9 (2021), 2338–2351. https://doi.org/10.1109/TPDS.2021.
3066276

[4] Kristof Jannes, Bert Lagaisse, andWouter Joosen. 2022. Seamless Synchronization
for Collaborative Web Services. In Service-Oriented Computing – ICSOC 2021
Workshops. Springer, Cham, 311–314. https://doi.org/10.1007/978-3-031-14135-
5_27

[5] Martin Kleppmann. 2022. Making CRDTs Byzantine Fault Tolerant. In Proceedings
of the 9th Workshop on Principles and Practice of Consistency for Distributed Data
(PaPoC ’22). ACM, USA, 8–15. https://doi.org/10.1145/3517209.3524042

[6] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark Mc-
Granaghan. 2019. Local-First Software: You Own Your Data, in Spite of the
Cloud. In Proceedings of the 2019 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Onward!
2019). ACM, USA, 154–178. https://doi.org/10.1145/3359591.3359737

[7] Stephan A. Kollmann, Martin Kleppmann, and Alastair R. Beresford. 2019. Snap-
doc: Authenticated snapshots with history privacy in peer-to-peer collaborative
editing. Proceedings on Privacy Enhancing Technologies 2019, 3 (2019), 210–232.
https://doi.org/10.2478/popets-2019-0044

[8] Hugo Krawczyk and Pasi Eronen. 2010. HMAC-based Extract-and-Expand Key
Derivation Function (HKDF). RFC 5869. https://doi.org/10.17487/RFC5869

[9] Essam Mansour, Andrei Vlad Sambra, Sandro Hawke, Maged Zereba, Sarven
Capadisli, Abdurrahman Ghanem, Ashraf Aboulnaga, and Tim Berners-Lee. 2016.
A Demonstration of the Solid Platform for SocialWeb Applications. In Proceedings
of the 25th International Conference Companion on World Wide Web (WWW ’16
Companion). WWW, CHE, 223–226. https://doi.org/10.1145/2872518.2890529

[10] Ralf Merkle. 1988. A Digital Signature Based on a Conventional Encryption
Function. In Advances in Cryptology (CRYPTO ’87). Springer, Berlin, Heidelberg,
369–378. https://doi.org/10.1007/3-540-48184-2_32

[11] Amit Sahai and BrentWaters. 2005. Fuzzy Identity-Based Encryption. InAdvances
in Cryptology – EUROCRYPT 2005. Springer, Berlin, Heidelberg, 457–473. https:
//doi.org/10.1007/11426639_27

[12] Marc Shapiro, Nuno Perguiça, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-Free Replicated Data Types. In SSS 2011 - 13th International Sympo-
sium Stabilization, Safety, and Security of Distributed Systems. Springer, Berlin,
Heidelberg, 386–400. https://doi.org/10.1007/978-3-642-24550-3_29

[13] Dominic Tarr, Erick Lavoie, Aljoscha Meyer, and Christian Tschudin. 2019. Se-
cure Scuttlebutt: An Identity-Centric Protocol for Subjective and Decentralized
Applications. In Proceedings of the 6th ACM Conference on Information-Centric
Networking (ICN ’19). ACM, USA, 1–11. https://doi.org/10.1145/3357150.3357396

[14] Albert van der Linde, João Leitão, and Nuno Preguiça. 2020. Practical Client-Side
Replication: Weak Consistency Semantics for Insecure Settings. Proc. VLDB
Endow. 13, 12 (2020), 2590–2605. https://doi.org/10.14778/3407790.3407847

[15] Gavin Wood. 2014. Ethereum: a secure decentralized generalized transaction ledger.
Yellow paper. ethereum.org.

https://doi.org/10.1145/3427796.3427831
https://doi.org/10.1145/3301418.3313938
https://doi.org/10.1145/3301418.3313938
https://doi.org/10.1109/TPDS.2021.3066276
https://doi.org/10.1109/TPDS.2021.3066276
https://doi.org/10.1007/978-3-031-14135-5_27
https://doi.org/10.1007/978-3-031-14135-5_27
https://doi.org/10.1145/3517209.3524042
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.2478/popets-2019-0044
https://doi.org/10.17487/RFC5869
https://doi.org/10.1145/2872518.2890529
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/3357150.3357396
https://doi.org/10.14778/3407790.3407847

	Abstract
	1 Introduction
	2 System model
	3 Secure CRDTs
	3.1 Encrypted CRDT
	3.2 Modified Merkle Patricia Trie
	3.3 Key derivation and rotation
	3.4 Global time
	3.5 Discussion

	4 Evaluation
	5 Related work
	6 Conclusion and future work
	References

