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ABSTRACT
Part of the web is shifting to a client-centric, decentralized model
where web clients become the leading execution environment for
application logic and data storage. However, the basic paradigm
of the web and the browser is still server-centric. The key data is
stored, served, processed and analyzed on central servers owned
by the service provider. This means that a good internet connec-
tion is required, otherwise the application will be slow, or even
unreachable when there is no internet. Furthermore, user data can
be stolen, modified, deleted or sold by the service provider itself, or
by an external attacker targeting the service provider.

We propose three middleware solutions for a client-centric web
paradigm where clients also become authoritative copies of the
data. Data can be replicated peer-to-peer between many clients and
servers. This kind of distributed and decentralized web application
architecture should be supported by both the browser and client-
side web middleware. The middlewares differ in their consistency
and trust model.

CCS CONCEPTS
• Security and privacy → Distributed systems security; • Net-
works → Peer-to-peer protocols; • Information systems →
Web applications.
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1 MOTIVATION AND RELATEDWORK
The computing landscape has changed dramatically over the last 50
years. It started with a centralized model where all computations
are done on a central mainframe controlled by thin clients. Later,
these clients became more powerful and computation shifted to
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these client devices. With the rise of cloud computing and Software-
as-a-Service offerings, the computations shifted back to central
servers. Cloud computing is beneficial for users in terms of avail-
ability, durability, security and collaboration. However, lots of data,
and therefore power, is given to few large tech companies and
governments, and end-users are losing control over their data. Fur-
thermore, a good internet connection is required, otherwise the
application will be slow, or even unreachable.

With the advent of mobile networks, offline-first software [14],
and distributed ledgers, the landscape is once again changing to a
more decentralized and client-centric model [7]. In this new par-
adigm, clients also become authoritative copies of the data. We
will focus on this paradigm change in web applications, as many
applications these days run in the browser. Even seemingly native
applications, are often just a wrapper around a web browser. The
introduction of fast mobile networks (5G) can help to improve reli-
ability and performance, but does not allow to drop the need for a
robust, offline-first approach. Network availability is still sparse in
airplanes, tunnels and remote areas. On a global scale, latency is
limited by the speed of light.

We propose three different protocols, implemented in three
browser-based middlewares, to support shared data editing in such
new architecture by using replication across two different dimen-
sions: trusted and untrusted environments, as well as eventual con-
sistency and strong consistency. We focus on collaborative web ap-
plications, where multiple users, with multiple clients, are working
concurrently on a shared data set.

Use cases. The scenario with eventual consistency in a trusted
setting is the default for collaborative applications such as shared
document editing. Multiple users are editing the same document,
potentially at the same time. Some users might be offline, e.g. in
an airplane, yet they can still continue to edit the document and
their changes will be replicated later when they come back online.
We have two use cases in an untrusted setting. One use case is an
integrated loyalty program with several merchants at a farmer’s
market or small shopping street [8]. Rather then relying on a trusted
third party, it should be possible to setup a peer-to-peer network
between them to make sure no customer sends their loyalty points
twice, and that no merchant tries to cheat the system. This requires
strong consistency. The last use case is similar to the first one
of shared document editing, but for environments where trust is
lacking. This can be distrust against other users in the peer-to-peer
network, but also distrust against the service provider hosting the
server.

Related work. Existing collaborative frameworks in a trusted en-
vironment, such as Google Docs, use a central server to coordinate
concurrent operations using Operational Transformation (OT) [6].
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The server will transform concurrent operations for each client so
they can be applied out of order. Using a central server to handle
conflicts does not allow extended offline usage, and scalability and
reliability are dependent on that server. Conflict-free Replicated
Data Types (CRDTs) [16] are data structures that guarantee eventual
consistency without explicit coordination. There are three different
categories of CRDTs. Operation-based CRDTs [13] are similar to
OT in the sense that replication is done by replicating the opera-
tions. However, concurrent operations must be commutative. This
removes the dependency on a central server, and makes offline use
possible. However, operation-based CRDTs need to keep track of
the state of every replica. For example, by using a vector clock with
one entry per client that has ever made an edit. This means that
the total size of the metadata grows without bound over time. This
is especially the case for web applications, where one user typically
has multiple clients, many of them which are used infrequently.
State-based CRDTs solve this problem by only relying on the state
and some metadata independent from the number of operations
or clients. However, to replicate such a CRDT, the whole state has
to be sent every time. For this reason, such state-based CRDTs are
only used between servers today. Delta-state based CRDTs [1, 17]
try to solve this problem by using extra metadata to calculate a
small delta state between two replicas, only the delta state must
be sent instead of the full state. However, to calculate these deltas,
replicas have to keep track of all editing replicas, for example using
vector clocks. This inherits the same problems as operation-based
CRDTs, where the size of the data will grow with the number of
replicas over time.

Decentralized interactions in an untrusted environment, where
strong consistency is required, can be enabled by using a Byzantine
Fault Tolerant (BFT) consensus protocol. A classical BFT consen-
sus protocol, such as PBFT [5], BFT-SMART [3] or HotStuff [19],
assumes a low-latency network link between all replicas, and one
replica will be elected as leader to drive the protocol. This does
not match the client-centric idea. In reality, the network link is
a mobile or WiFi connection, and not every replica has enough
resources to be elected as leader. More recent BFT protocols, such
as Tendermint [4], relax the networking requirement by using a
multi-hop gossip protocol between the replicas. However, the leader
still remains a single point-of-failure, leading to large latencies each
time a new leader has to be elected.

If an application in an untrusted environment can deal with even-
tual consistency, this would be a more pragmatic option. However,
traditional CRDTs only guarantee strong eventual consistency in
a trusted setting. One malicious replica is able to let other repli-
cas diverge forever. Rational misbehaving replicas might be kept
honest by always being able to detect they have misbehaved [18],
however this does not guarantee convergence if they still choose
to behave Byzantine. Kleppmann [12] showed that it is possible to
make operation-based CRDT tolerate malicious replicas and guar-
antee strong eventual consistency. Besides keeping the replicas
consistent, data should be encrypted so that not all replicas are able
to read all data. This would allow to use untrusted servers as cen-
tral replication point. Such a server is almost always online, and is
typically more reliable then a client device. Barbosa et al. extended
standard CRDTs with cryptographic protocols [2]. One last require-
ment is that each update should be attributable to the user that

Figure 1: Peer-to-peer network of trusted devices. Each device
has a local copy of the data, and can continuemaking changes
even when network partitions occur.

made the update. One framework supporting this is Snapdoc [15].
However, there is no framework yet that supports both strong even-
tual consistency in a Byzantine environment, which also provides
confidentiality, integrity and attributability. Furthermore, all these
approaches only work well in a mostly static environment where
the set of replicas is known beforehand and is not often changed.
They can be reconfigured by stopping the protocol, adding or re-
moving a new replica, and start it again. In case such a membership
change would be done online, concurrent updates to the actual
data might be lost, or the membership reconfiguration has to be
restarted each time a concurrent update occurs.

2 CONTRIBUTIONS
In this section, we briefly present three proposed approaches for
client-centric replication in different trust-environments and consis-
tencymodels. The first approach is eventual consistency in a trusted
setting, for example shared document editing where users can go
offline. The second approach is strong consistency in an untrusted
setting, for example an integrated loyalty points network between
merchants. The third approach is eventual consistency in an un-
trusted setting, for example shared document editing where the
central server or other clients are not trusted. We will not discuss
the full protocol in detail, but focus on their achieved properties.

2.1 Eventual consistency in a trusted setting
This first scenario is both a client-server, as well as peer-to-peer
network (Figure 1). Clients can be offline, but should be able to con-
tinue working and should be synchronized quickly when coming
back online.

We propose a novel replication protocol for state-based CRDTs
that allow replicas to use a Merkle-tree that follows the tree-shaped
structure of the actual data to replicate changes in a fine-grained
way. The Merkle-tree makes it possible to quickly find out the
updated data items, and only replicate these. This solves the biggest
problem of state-based CRDTs, namely that normally the full data
set has to be sent to replicate and merge data. This way, state-
based CRDTs become suitable for a client-centric deployment on
mobile networks with low-bandwidth and large latency compared
to server-to-server networks where state-based CRDTs are used
today. The state-based approach makes the replication much more
reliable and robust against temporary network failures compared
to operation-based approaches. There are also no client specific
identifiers required for correct replication. This means that the total
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Figure 2: Peer-to-peer network of untrusted clients, reaching
strong consistency via Byzantine Fault Tolerant consensus.

size of the metadata is only a function of the actual data size itself,
it does not grow with the number of client, nor with the number of
operations.

We implemented this protocol in OWebSync [9, 10], a web-based
middleware for data replication in interactive groupware with fast
resychronization of offline clients, and continuous, interactive syn-
chronization of other clients. Application developers can leverage
OWebSync to model their application data in a JSON-tree, which
will internally be mapped on a Merkle-tree and several state-based
CRDTs. In an optimal environment, our protocol is slightly slower
than operation-based approaches, with a 99th percentile latency
of 1.3 seconds compared to the 0.3 seconds for operation-based
approaches. However, once we introduce network failures, OWeb-
Sync outperforms the other technologies with a 99th percentile
latency of 3.5 seconds. The operation-based approaches need 10s
of seconds to recover from a network failure in a large network of
24 clients.

2.2 Strong consistency in an untrusted setting
Some applications will require strong consistency. In a distributed
setting with potentially malicious clients, and multiple readers
and writers, this translates into the Byzantine Fault Tolerant (BFT)
consensus problem. In such a peer-to-peer network replicas can
be actively malicious (Figure 2). It also won’t be possible to make
updates offline, as the requirement for strong consistency obligates
coordination between the replicas before an update is accepted.

We propose a novel BFT protocol that is designed to be leaderless,
lightweight and robust. It does not rely on a leader, removing the
need for a costly leader-election procedure when it is malicious or
loses its network connection. The latter scenario is common in our
target environment. The full state, including the consensus votes,
is replicated by using a state-based gossip protocol similar to the
protocol from the previous section. A major feature of gossip-based
communication is its reliability. Thanks to the state-based nature,
replicas that experienced short intermittent failure, can be quickly
up-to-date again and continue voting.

We implemented this protocol in a web-based middleware for
decentralized BFT consensus in client-centric, community-driven
web applications. It exposes a replicated key-value store to develop-
ers for which the browser replicas coordinate agreement using our
novel BFT protocol. It has a similar lightweight setup and architec-
ture as a trusted peer-to-peer data synchronization framework such
as OWebSync: only a peer-to-peer discovery service and the actual
browser replicas are required to setup a decentralized network.

Figure 3: Hybrid architecture of a peer-to-peer network with
a centralized server. Not every replica may have access to the
actual plain data, and some devices can even be malicious.

Compared to other BFT frameworks using a classical BFT consen-
sus protocol with a leader, it is much more robust when the network
connection of the leader replica fails. There is no difference in com-
mit latency for our protocol, while the classical protocols need 10s
of seconds to repair, or even fail to recover for larger networks. The
disadvantage of our protocol is the increased latency in optimal
scenario’s, without failures, from 100s of milleseconds for a clas-
sical BFT protocol to 1-4 seconds for our protocol. Compared to
other BFT frameworks that also use a gossip-based approach to
achieve consensus, our protocol confirms transactions faster, uses
less bandwidth, and is more robust against failures.

2.3 Eventual consistency in an untrusted setting
For applications that do not require strong consistency, choosing
for eventual consistency is the most pragmatic option. As client
devices are often offline, reaching a global consensus to have strong
consistency would be nearly impossible. This third scenario is a
hybrid approach of a peer-to-peer network of mostly client devices
and some centralized servers to improve availability and durability
(Figure 3). Having some kind of centralized server can be beneficial
to aid the client-centric vision. The server is most of the time online,
and all clients can use this server to replicate their data to each
other. Even when they are never online simultaneously.

We propose a novel, secure, state-based CRDT protocol [11] that
extends classical state-based CRDTs to guarantee strong eventual
consistency, even with Byzantine replicas, and with confidentiality,
integrity and availability properties. All user-data is encrypted
per field in every (sub)-document, to preserve confidentiality and
integrity. This allows for a dynamic membership with fine-grained
key management. This protocol is the first to allow both concurrent
data updates, as well as concurrent updates to the access control
policy. This means that a user can share a document, or revoke
access, without losing concurrent updates to that document.

This protocol is implemented in a web-based middleware for
data synchronization in interactive groupware with untrusted repli-
cas. Similar to OWebSync, this framework allows for concurrent
editing by multiple replicas, even when they are offline or parti-
tioned. However, all data is encrypted by default and every change
is attributable to the editor. Despite this fine-grained encryption,
the middleware can be used for interactive, collaborative document
editing. The drawback is the much higher storage space required, as
the size of the data, including metadata, is increased up to a factor



Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Kristof Jannes

19. However, this increased size is constant. The size does not grow
over time, nor with the number of replicas.

Compared to the state-of-the-art, this middleware is more dy-
namic and fine-grained. Strong eventual consistency will be main-
tained, even when users are added or removed, when users are
malicious, or when the access control policy changes. This means
that no rollbacks are necessary and no concurrent updates will be
lost, even when they are concurrent to policy changes. No explicit
coordination is required between the collaborators when rotating
an encryption key.

3 CONCLUSION
We proposed three different protocols to support data replication in
distributed and decentralized web applications in different trust set-
tings and consistency models. These protocols are implemented and
evaluated in three different web-based middlewares. The middle-
wares can support the client-centric, offline-first architecture, giv-
ing more control to end-users over their data. Existing frameworks
often lacked robustness and resilience to (temporary) network fail-
ures, offer no security guarantees, do not allow fine-grained online
changes to the access control policy, or do not scale well with the
client-centric nature of the decentralized web.
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