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Abstract—This paper provides an in-depth security and pri-
vacy analysis of the Solid protocol. Solid is a specification that
allows user data to be stored decentralized in a personal online
datastore (pod) independent from the application. This allows
users to easily migrate to a different service and have more con-
trol over who data is shared with. We provide a comprehensive
overview of the authentication, identification, and authorization
protocols within Solid. We make use of the SPARTA threat
modeling tool to assess the security and privacy aspects of Solid
by modeling a realistic finance analytics application envisioned
by the Solid community. This concrete use case allowed us to
prioritize the residual threats in Solid. We employ methodologies
such as STRIDE and LINDDUN for robust security and privacy
threat modeling. The findings highlight the existence of several
critical threats in the Solid specification. This is especially the
case for privacy threats, which although it is an essential aspect
of Solid, has so far not yet received enough attention, as our
results indicate. These findings can be employed in future work
to prioritize which residual threats to address and mitigate first.

Index Terms—Solid, Security, Privacy, STRIDE, LINDDUN,
SPARTA

I. INTRODUCTION

The traditional centralized architecture of the web has led
to a reality in which a few service providers are continuously
harvesting the personal data of their users, while these users
tend to keep using these service providers due to lock-in,
convenience, and the network effect. However, awareness is
growing about the possible individual and societal impacts of
such centralization of online data-centric activities, and service
providers, individual users and society at large are increasingly
aware of possible negative outcomes.

According to Tim Berners-Lee, the inventor of the web,
there are some key challenges in the traditional structure of
the web [1]. Firstly, users have no control over their data.
By entrusting their personal information to service providers,
users relinquish the ability to conveniently manage, share,
correct, delete, or migrate their data as desired. Furthermore,
by having access to large volumes of personal data, service
providers are becoming very effective in personalizing in-
formation through advanced analytics techniques that involve
learning and predicting user preferences through similarity-
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based analysis, etc. Service providers can exploit this informa-
tion to manipulate or influence the behavior of users. Armed
with an understanding of users’ preferences and interests,
providers may disseminate misinformation for financial or
political motives, eroding trust and undermining the integrity
of information sources. Consequently, since there are a few
renowned platforms, people might be targeted by some of this
fake news for political advertisement purposes.

Moreover, the ever-growing user base poses a challenge
for service providers as the volume of data they must col-
lect becomes unmanageable within the confines of legitimate
limitations [1]. Consequently, transitioning to a structure that
eliminates the dependency on accumulating vast amounts of
data becomes appealing for both users and potential service
providers. Such a transformation would shift competition
toward innovation rather than data acquisition.

Solid, introduced in 2016 [2], presents an alternative web
architecture that addresses these concerns. In Solid, users’ data
is stored in Personal Online Data stores (pods) rather than
being stored on the servers from the service providers. This
paradigm allows users to exercise granular control over access
permissions, enabling them to choose which entities within
the system can access their data and revoke access when-
ever desired. Additionally, this decentralized approach makes
switching between different applications more seamless for
users. Notably, the advantages offered by Solid have captured
the attention of certain governments, such as Flanders [3], who
are actively pursuing its adoption.

A more fundamental form of decentralization however
does not automatically alleviate security and privacy concerns
which are diverse and broad. A fundamentally different archi-
tecture brings a number of unknown risks related to security
and privacy [4]. While a number of security controls have been
integrated into the Solid technology stack, an in-depth end-to-
end analysis of the potential threats and risks is currently still
generally lacking. This is however an important prerequisite
for a gap analysis and systematic mitigation of the diverse
concerns related to security and privacy.

In this paper, we present an in-depth security and privacy
analysis of the Solid technology. The methodology involves
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extensive threat modeling and analysis (i.e. assessment of
possible threat scenarios on a system model) of a represen-
tative and real-world Solid application case: analytics based
on personal finance information across a larger set of data
subjects. We apply both STRIDE [5] for security and LIND-
DUN [6] for privacy threats. The performed analysis is not
conducted agnostic of existing Solid security and privacy
solutions and involved a thorough modeling of the identifi-
cation, authorization and authentication protocols in Solid. To
ensure thoroughness, reproducibility and explainability of the
outcomes, we adopt SPARTA! [7] which performs automated
and generative threat elicitation and performs risk assessment
based on a wide variety of factors such as an assessment of
asset values, the strength and application of security solutions,
the characterization of attacker capabilities, etc. Applying the
analysis to a concrete and realistic Solid use case (the financial
analytics case) allows us to express risk outcomes in a more
concrete and tangible manner, and also enables us to validate
the outcomes in the specific context of the application. The
application case itself is representative of a larger class of use
cases in which personal data is collected from many individual
data subjects, it is aggregated and analyzed and then used in
support of a commercial offering.

An in-depth overview of the authorization and authentica-
tion protocols employed in the Solid architecture has been
provided in this paper. The contributions of this paper can
be summarized as follows: (i) we perform an in-depth threat
analysis focusing both on the security and privacy residual
risks of Solid’s authentication protocol using state-of-the-art
threat modeling tools; and (ii) we leverage the outcomes
analysis to identify critical threats for each data flow and entity
within the Solid ecosystem.

The rest of this paper is structured as follows. Section II
provides an overview of Solid and explains the finance use
case. Then, in Section III, we explain the background of
our threat modeling methodologies and the threat modeling
tool we employed. Section IV explains how we modeled the
finance application of Solid in SPARTA. Section V presents
our results from SPARTA’s analysis. Finally, Section VI sum-
marizes our main results and discusses future work based on
our paper’s results.

II. OVERVIEW OF SOLID

This section provides the necessary background on the
Solid platform and its security architecture. Section II-A
first outlines the different entities involved in Solid. Then,
Sections II-B to II-D discuss the security and privacy solutions
that already make part of Solid, respectively for identification,
authorization and authentication. After outline the generic
architecture of Solid in Section II-E, the motivational case
—a financial analytics application— for this article is discussed
in Section II-F.

A. Entities

Basically, there are five types of entities in Solid:
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Agents Agents encompass the interfaces of users who
desire to store their data and exert control over
its access.

These entities use agents’ data, subject to their
consent, to deliver various services. Additionally,
agents can delegate the authentication process
to web applications, enabling access to other
agents’ data, provided that the necessary access
permissions have been granted beforehand.

Pod providers are responsible for providing pods
for the agents. Upon receiving valid queries from
the agents or the web applications, they should
send the required data.

These entities authenticate agents, allowing pod
providers to validate the authenticity of agents’ re-
quests. They can also maintain access control lists
for agents, specifying which agents are authorized
to access their data. Notably, a pod provider can
also function as an identity provider.

To make verification of the providers possible for
the agents and the web applications, the certificate
authority issues certificate for the providers.

Web ap-
plication

Pod
provider

Identity
provider

Certificate
Authority

In addition to the aforementioned entities, we can have
entities called aggregators that are responsible for collecting
data from various pods for analytical purposes and collecting
the aggregated data in some pods. Like the agents and the
web applications, they rely on their identity providers for
authentication and authorization. We consider these kinds of
entities in our threat modeling.

B. Identification

Solid employs the WebID protocol [8] for identifying the
agents and the web applications. A WeblD is a URI (Uniform
Resource Identifier) denoting an agent. Each WebID of an
agent is associated with one WebID profile document and is
under the control of that agent. The WebID profile document
consists of RDF (Resource Description Framework) graphs
using Turtle language [9]. An RDF graph has three compo-
nents; subject, predicate, and object. The predicate describes
the relation between the subject and the object. For instance,
if a WebID is associated with a public key PK, the subject,
predicate, and object would be the WebID, public key, and
PK, respectively. The WebID for each agent will be generated
by the identity provider after an authentication process. This
process could be an Email verification like the existing pod
provider (in developer preview) Inrupt Pod Spaces.?

C. Authorization

Web Access Control (WAC) [10] is being used for au-
thorization in Solid. Using an Access Control List (ACL)
ontology, agents can define an access control policy over their
data. These policies can be defined by RDF graphs specifying
who can access a document and what their access mode is,
i.e., what they can do with this document (read, write, append,

Zhttps://start.inrupt.com/profile
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or control). It is exemplified (not imposed) in [10] that we
can have authorization servers storing these RDF documents.
Therefore, receiving an access request, they can search the
RDF document by running a SPARQL query code [11]. Then
depending on the value of the boolean output of the code, they
respond with an access token or an access denied message.

D. Authentication

At first, the WebID-TLS protocol [12] was proposed for
the authentication in Solid [13]. However, it is not employed
anymore (it can be used as an additional authentication
method) [14]. Instead, the Solid-OIDC protocol [15] is being
used in Solid.

Below, the protocol is explained with a scenario in which
Alice accesses a document from Bob (assuming Bob has
already granted access to Alice). In this scenario, Solid-OIDC
supports authentication delegation so that Alice can access
Bob’s document using a web application. The protocol is
divided into two phases.

In the first phase (Fig. 1), Alice’s interface will delegate
the authentication process to a client (web application). This
phase consists of five entities. Alice’s interface is the agent,
and the client is the web application. A client’s ID and an end-
user’s (Alice’e) WebID document can be located in the servers
of the client’s and Alice’s identity providers, respectively. We
also have an OpenlD provider, which is an identity provider
of Alice and has issued Alice’s WebID. This phase is very
similar to the OpenID Connect flow called the Authorization
Code Flow with PKCE. In what follows, we briefly explain
how this phase works.

1) Alice’s interface sends its OP’s (OpenID Provider’s) URL
(Uniform Resource Locator) or WebID to the client.

2) If the WebID was sent, the client retrieves the OP’s
information from Alice’s profile.

3) The client retrieves OP’s configuration to get information
about the authorization process.

4) Then, the client will send an authorization request to the
OP along with a commitment. this commitment is the
hash of a secret value.

5) The OP will retrieve the client’s profile from its ID
document to verify its URL

6) Afterwards, Alice will be directed to the log-in web page
of the OP.

7) Authenticating Alice’s identity, the OP will generate a
cryptographic random string as the authorization code.

8) Firstly, the client generates an asymmetric key pair. Then
by employing a hash function, digital signature, and the
authorization code, it sends a token request to the OP.
This message contains the reveal of the fourth message
(the input of the hash function). This ensures the OP,
that the sender of the eighth and fourth messages are the
same.

9) If the OP verifies everything in the eighth message, it
generates a token for the client. This token states that the
client with a specific ID and public key (generated before
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Fig. 1. The First Step of Solid-OIDC [15]

sending the eighth message) is authorized to represent
Alice in requesting Bob’s data.

In the second phase (Fig. 2), the client will use the token
it received from the OP of Alice to access Bob’s document.
In this phase, we have two new entities. The first one is a
resource server which has Bob’s document. This is the pod
provider of Bob in our definition. The second one is Bob’s
authorization server which contains all the policies that Bob
has set for his documents. Since these policies are over Bob’s
WebID, and each WebID can have multiple pods, it is logical
to assume this authorization server is located in the servers of
Bob’s identity provider.

1) Firstly, the client will ask the resource server, which
authorization server it should communicate with.

2) Finding out the authorization server, the client retrieves
the configuration to get information about the authoriza-
tion process.

3) Then, by using the token from the first phase, it requests
an access token it can use for accessing Bob’s document.

4) The authorization server extracts Alice’s WebID from the
token. Then it retrieves Alice’s profile document to verify
the validity and whether the claimed WebID’s OP in the
token matches the OP in the profile.

5) Then, the authorization server retrieves the OP’s con-
figuration, including its public key. By using all the
information, it can verify the validity of the token.

6) If the token is valid and there is an RDF graph stating
that Alice is authorized to have access, the authorization
server will send an access token to the client.

7) The client requests Bob’s document using the access
token.

8) The resource server returns the result if the token is valid.

E. The Solid architecture

In Fig. 3, a simple structure of the Solid protocol is
illustrated. The agents send their data and delegate the au-
thentication process to the web applications and in return
will be provided with some services. The agents and the web
applications will follow some authentication and authorization
processes to receive their WebID or their requested token
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Fig. 3. Simple Architecture of Solid

from the identity providers. Then, the agents and the web
applications can use the tokens to send their data or access
requests to the pod providers and receive results. However, we
did not mention the certificate authority in this structure. Using
the mentioned protocols, the identity providers and the pod
providers can authenticate the agents and the web applications.
But it seems that the agents and the web applications cannot
authenticate the providers. However, they can do that because
the authentication protocols that we discussed are based on
the HTTPS (Hypertext Transfer Protocol Secure) protocol
which uses the TLS (Transport Layer Security) handshake. In
the TLS handshake, a server should send its valid certificate
(issued by a certificate authority) to the user [16]. Therefore,
the agents and the web applications can verify the certificate
of the providers before authenticating themselves.

F. Motivating example: Financial analytics case

To be able to correctly model all security and privacy threats
of the Solid ecosystem, we will use a realistic use case as
a concrete example. The Solid Financial Analytics case is
a personal finance application for end-users. In its simplest
form, this comprises of a user, a solid pod and the application
itself. Users can enter all of their financial transactions into
the application, which will store all this data in the Solid pod
of the user. With this data, the application can show relevant
statistics and insights into the users’ financial situation. Users

on the other hand know that their financial data is safe, as this
data is never stored with the application itself. They have full
control over their data pod and can withdraw access to this
data whenever they want. These kind of applications on top
of Solid already exist today.> However, by using the Solid
concept of an aggregator, this use case can be enhanced.
The aggregator will collect data from all Solid pods that it
get authorization for to calculate aggregate statistics over the
financial data from the users. This aggregate data can in turn
be stored in a Solid pod from the aggregator so that other
applications can access this data and display it to their users.
Instead of users manually entering their financial transactions
into an application into their Solid pod, financial institutions
(e.g. banks) can provide this data for the user into their own
Solid pod. This makes it easier for users, as their data in the
pod is populated automatically, but also ensures that the data
in the pod is correct, for example by requiring the financial
institutions to sign this data. This way, aggregators can know
they are working on correct data.

This example use-case is ideal for our threat modeling, as
this case contains many different features and components of
Solid: pod providers, identity providers, aggregators, 3rd party
data sources (the financial institutions). It also handles highly
sensitive financial data with potentially great impact for the
user when threats are present. No user wants to expose their
current financial situation or spending habits to any of the
parties inside or outside the system.

III. BACKGROUND ON THREAT MODELING

In this section, we first explain STRIDE and LINDDUN,
which are the security and privacy threat modeling methodolo-
gies we used for threat modeling. Then we introduce SPARTA
which is an automated risk-based threat analysis tool.

A. Security Threat Modeling Methodology

We use STRIDE for security threat modeling methodology.
STRIDE threat modeling, developed by Microsoft [5], [17],
offers a comprehensive and structured approach to identifying
and addressing potential security threats by analyzing how
an adversary may exploit vulnerabilities to software systems.
STRIDE is an acronym of the six different threat types that a
system can be endangered by:

S1. Spoofing: Posing as somebody or something else;

S2. Tampering: Modifying the data without authorization;

S3. Repudiation: The possibility of denying performing an
action that should be linkable to its performer;

S4. Information Disclosure: The disclosure of the information
to unauthorized individuals;

S5. Denial of Service (DoS): Making the system inaccessible
to its valid users;

S6. Elevation of Privilege: Gaining more rights than were
granted before, without authorization.

3https://budgetimize.com



B. Privacy Threat Modeling Methodology

LINDDUN [6] is used for privacy threat analysis. LIND-
DUN is a comprehensive and structured approach to identify
potential privacy threats to personal data. LINDDUN is an
acronym representing seven different types of threats*:

P1. Linking: Linking threat means connecting related data
items to gain deeper insights into individuals or groups.

P2. Identifying: Undesired learning the data subject’s identity
through leakage, deduction, or inference means identify-
ing threat.

P3. Non-Repudiation: Non-repudiation threats arise when an
individual is unable to refute specific claims or actions.

P4. Detecting: A system is vulnerable to detecting threats if
unauthorized entities can identify data subject involve-
ment, membership, or participation to the system.

P5. Data Disclosure: Data disclosure threats refer to situa-
tions where personal data is exposed due to unnecessary
data collection, processing, or involvement of unwanted
parties.

P6. Unawareness and Unintervenability: This threat refers to
inadequately informing, including, or empowering a data
subject in its role and relation to the system.

P7. Non-Compliance: Not following the legislation (such as
the GDPR [18]), inadequate personal data management,
and insufficient risk management can lead to this threat.

C. SPARTA

The security and privacy threat analysis of the application
is performed using the SPARTA threat modeling tool [7].
SPARTA analyzes a Data Flow Diagram (DFD) model of the
application to automatically elicit security and privacy threats
according to STRIDE and LINDDUN by iteratively going
over every interaction in the model. Additionally, SPARTA
performs a per-threat risk analysis to prioritize the identified
threats. In addition to the DFD model, SPARTA leverages two
key additional inputs in order to prioritize the security and
privacy threats it elicits.

First, the DFD model in SPARTA is extended with support
for modeling security and privacy solutions [19] to capture
more comprehensive combinations of security and privacy
countermeasures that affect multiple DFD elements. These
solutions are taken into account in the subsequent risk analysis
of the threats.

Second, the DFD model in SPARTA is enriched with asset
values and data types. These values can be used to express
which elements handle important information or sensitive
personal data. This additional information is taken into account
as part of the risk analysis (together with the aforementioned
countermeasures) in order to calculate the residual risk value
for every elicited threat. This way, threats for which there are
already sufficient mitigations in place will have a reduced risk
value and will receive a lower priority.

It is a recurring challenge in risk analysis to establish mean-
ingful numerical values, especially when dealing diverse risks.

“https://linddun.org/

SPARTA’s risk model is based on FAIR [20] and supports
expressing uncertainty in the provided values expressed as
parameters for a modified-PERT distribution [21] (minimum,
mode, maximum, and a confidence). SPARTA’s risk calcu-
lation mechanism employs sampling of diverse distributions
and takes into account many risk components, such as an
expression of asset values, a characterisation of solutions,
attacker profiles, etc. We refer the interested reader for more
details about the risk calculation mechanism to [22].

The values reported by SPARTA are not absolute but relative
values, in the sense that they can be used to directly compare
individual risks and threats (also between projects), but also
for example to monitor risk reduction over time.

IV. MODELING THE FINANCE APPLICATION OF SOLID
USING SPARTA

In this section, we first discuss our trust model. Then, we
explain how we performed an in-depth security and privacy
threat analysis of Solid, through its individual steps: (i) design-
ing the DFD model based on the finance analytics use case,
(i1) enriching and including the different security and privacy
solutions that are already present in Solid, and (iii) assigning
asset and risk estimates to the elements of the DFD model.

A. Trust Model

In order to have a sound and reproducible analysis of the
Solid, it is also important to establish and document our trust
model (assumptions and contextual considerations relevant to
the analysis) up front. We adopt the core assumption that
the entities involved in the system (the identity and pod
providers) are semi-honest, i.e., they do their job well (they
will not act maliciously), but they may be curious about
the data they collect, for example about the individual data
subjects (identity, role, involvement), about competitors in the
ecosystem, etc.

B. The DFD Model

We designed the DFD model of the authentication protocol
in a finance application of Solid. We assumed that there are
two users (users 1 and 2) in the system with issued WebIDs
from different identity providers (identity providers 1 and 2
respectively). They have already sent their ACL commands
to their identity provider. They want to have access to their
finance information using two different applications. These
finance information has been sent to the users’ pod providers
(pod provider 1 and 2 respectively) by a financial institution.
There is also an aggregator with its identity provider (identity
provider 3) and its pod provider (pod provider 3). It was
assumed that each of this users has already granted access
to this aggregator to access their data to be able to access
the statistical data it sends to pod provider 3. This access
policy has been set in identity provider 3. Each provider has
a controller and a data store. We provided the DFD model for
a case that user 1 wants to see its own finance data, user 2
wants to see the statistical data, and the aggregator wants to
receive the users’ data.
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Since the whole DFD model is too big to provide in this
paper, we will focus on the four main procedures separately:

1) Authentication Delegation: In this procedure the users
delegate the authentication to a finance application illustrated
in Fig. 4. In this figure, we basically simplified the first pro-
cedure of Solid-OIDC by omitting retrieving profile messages
and merging the fourth, seventh, eighth, and ninth messages
in Solid-OIDC into two messages between the application and
the identity provider. There is one additional data flow between
the data store and the controller of the identity provider, which
is used for the log-in verification. In the case where the finance
application wants to access its user’s pod, the authorization
token can also be used as the access token.

2) Access Control: This procedure is a simplification of
the second step of Solid-OIDC as shown in Fig. 5. In this
procedure, either the finance application or the aggregator
sends an access request to the identity provider. Then, the
identity provider looks into its data store to check whether
the aggregator or the user who delegates the authentication
process to the finance application has been granted to access
the requested data before. If it has been granted, the identity
provider issues an access token and sends it to the requester.

3) Access Request: Figure 6 illustrates the access request
procedure. The finance application or the aggregator who has
received the access token can use this to send an access request
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to the pod provider where the requested data is located. The
pod provider checks the validity of the access token and then
will send the data to the requester.

4) Sending Data: In this procedure, the financial institution
sends the signed finance data of the users to their pods. Before
storing the data, the pod provider checks the validity of the
signature. This procedure can be seen in Fig. 7. By employing
this procedure, tampering threats located on the receiver of the
signed data are mitigated.

C. Security and Privacy Solutions

We added two types of solutions to the SPARTA model.
The first type includes the solutions that are inherent in the
DFD model. However, the second type is associated with
Solid’s protocols. For modeling these solutions, we assumed
that Solid protocols (for the identification, the authorization,
and the authentication) are able to meet their goals. In what
follows we discuss both of these types.

1) Within Trust Boundary Solutions: All the providers have
two entities within their trust boundaries, the controllers and
the data stores, communicating with each other. Therefore, all
the data flows within these boundaries do not have any security
or privacy threats.

2) Solid Solutions: There are five types of solutions added
to the DFD model that are related to Solid:

o Secure Pipe: This is one of the predefined solutions in
SPARTA. Countermeasures of this solution are like what
HTTPS protocol offers. We added this solution to the
“Log-in” data flows. Through encryption, it effectively
mitigates the ’Information Disclosure’ threat. Addition-
ally, the presence of a certificate in the TLS handshake
enables the sender to verify the identity of the receiver,
thereby eliminating the “Spoofing Identity” threat on the
receiver’s side.

o Secure Pipe with Client Authentication: We added this
solution to all the remaining data flows because, in all
of them, the receiver can also check the identity of
the sender. Therefore, in addition to the “Secure Pipe”
countermeasures, there is no “Spoofing Identity” threat
on the sender side. Moreover, as the receivers are able to
establish a connection between a received data flow and
its sender, the “Repudiation” threat on the sender side is
also mitigated.

« Authentication Delegation: This solution is based on what
the first procedure of the DFD model provides. Using
this procedure, the user and the finance application can
be authenticated by the identity provider. As a result,
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the threats of “Spoofing Identity” and “Repudiation” are
eliminated on their respective sides. Additionally, based
on our assumption that the providers are semi-honest,
neither the users nor the finance application can acquire
additional privileges, thus mitigating the “Elevation of
Privilege” threat. Moreover, the authorization token gen-
erated at the end of this procedure can not be tampered
with. Therefore, we have “Tampering” mitigation on the
finance application side.

o Access Control: This solution relies on the second proce-
dure. Based on the reasons we discussed for the previous
solution, by using this solution on this procedure, the
“Spoofing Identity,” the “Repudiation,” and the “Elevation
of Privilege” threats located on the finance application or
the aggregator are mitigated.

o Access Request: This solution is added to the third
procedure. Similar to the two previous solutions, effec-
tively mitigating the threats of “Spoofing Identity,” “Re-
pudiation,” and “Elevation of Privilege” present within
the finance application or the aggregator. The access
request includes a token generated by an identity provider,
thereby mitigating “Tampering” on the controller side.
Furthermore, the access token itself remains invulnera-
ble to tampering, ensuring the absence of “Tampering”
threats on the finance application or aggregator side.

o Signature: We added this solution to all the data flows
containing the financial data or the aggregated financial
data. By utilizing this solution, the “Tampering” threat
on the receiver side is eliminated. Additionally, since the
pod provider is semi-honest, and the financial institution
is authenticated, there is no “Elevation of Privilege” threat
located on the financial institution side.

D. Asset and risk estimates

To be able to prioritize any of the threats, SPARTA needs
information about the potential loss that a threat can cause
if it would occur. We provided this information both for the
specific data assets, as well as an estimate for each different

entity and data flow per STRIDE and LINDDUN threat. We
choose to discretize these values in three categories: low (L)
(minimum = 0, mode = 1 and maximum = 2), medium
M) (minimum = 1, mode = 2 and maximum = 3) and
high (H) (minimum = 2, mode = 3 and mazimum = 4).
In the finance use-case, there are four different assets which
are of value:

1) Financial data: this is the actual financial data of an
individual user. This data is very valuable and its value
is therefore estimated as high.

2) Aggregate financial data: these are aggregate statistics of
financial data of many users, this can still be sensitive if
data is not correctly aggregated with respect to privacy,
i.e., too few users in one category. Therefore we estimate
its value as medium.

3) WebID (and other URISs): this is an identifier of the user,
we estimate it as less sensitive (low) compared to the
actual financial data of a user, but it is still personal data.

4) Username and password: used by to user to authenticate
with the identity provider. It is estimated as high.

For the different entities and dataflows in the DFD we esti-
mate the risks as shown in Table I. These values are highly
influenced by the type of data that is stored or processed at a
certain entity.

V. RESULTS

In this section, we utilize the SPARTA analysis on our DFD
model to assess threats and categorize them based on their risk
value. Firstly, we evaluate the effectiveness of Solid’s solution
in mitigating privacy and security threats. Next, we identify
the highest-risk threats associated with each DFD element.
Finally, we delve into the high-risk threats, providing a detailed
explanation of their sources.

A. Impact of Solid’s Solutions in Mitigating Threats

Based on the assigned asset and risk values, SPARTA
calculates the risks of each threat located in each DFD
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Fig. 8. Impact of Solid’s Solutions on Privacy Threats

element. Upon analysis and prioritizing the threats based on
their risk values, it was observed that the risk values could be
categorized based on their proximity. It means that there are
several noticeable gaps between these values that can be used
for classification. Although the resulting risk values fluctuate
whenever we re-run the SPARTA analysis as they are derived
from statistical distributions, they always remain in the same
category. Since the risk values fall within the interval of 0 to
16.4, we have divided this range into four equal parts using the
risk values 4.1, 8.2, 12.3, and 16.4 as threshold margins. This
classification results in four categories, namely “No Risk,”
“Low Risk,” “Medium Risk,” and “High Risk.” For instance,
all the threats with risk values between 4.1 and 8.2 are included
in the “Low Risk™ category. As all the threats’ risk values in
the first interval are zero, we call their category “No Risk.”

To assess the impact of Solid’s solutions on mitigating
the threats we analyzed the DFD model again by removing
these solutions from SPARTA. Therefore, only *Within Trust
Boundary’ solutions were considered. In Fig. 8 and Fig. 9,
the impact of Solid’s solutions on the privacy threats and the
security threats are illustrated, respectively. Solid’s solutions
effectively mitigate 54% of the security threats, indicating their
significant impact on this category. However, when it comes
to privacy threats, Solid’s solutions only mitigate 4% of them.
These figures highlight the varying impact of Solid’s solutions
on each threat category. Another noteworthy result is that by
implementing Solid’s solutions, the overall summation of risk
values decreases by approximately 18%.

B. Highest Risk Threats per DFD Element

Table II illustrates the highest risk category located on each
DFD element (“0”, “L”, “M” and “H” represent “No Risk”,
“Low Risk”, “Medium Risk” and “High Risk”, respectively).
By examining the table, we can easily identify the level of
risk posed by various threats on each element. For instance,
when examining the identity providers, we observe that at least
one of the non-repudiation and unawareness threats falls into
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the "Low Risk” category, while none of them are classified
as “Medium Risk” or “High Risk.” This table serves as a
valuable tool for identifying the DFD elements that require
more attention and prioritization for effective threat mitigation
strategies.

C. Unawareness and Non-compliance Threats

Solid as a technology enabler is intended to improve data
sovereignty, and puts a number of data management respon-
sibilities into the hands of the data subjects. The predominant
approach to attain this is the decentralized architecture of
Solid and the degree and extent of controls offered to the data
subject. Against this reality, it may seem counter-intuitive that
Table II pinpoints a number of residual High-Risk Unaware-
ness and Non-compliance threats.

The evaluation of relevant threats in the two final LIND-
DUN threat categories —Unawareness and Non-Compliance—
in both cases relies heavily upon contextual information that
is not represented in a data flow diagram (DFD) [23].

A DFD expresses data flow but not control flow, and
thus the extent or nature of different controls offered to the
data subject is more difficult to evaluate just at this basis.
Furthermore, data subject controls were also not modeled as
solutions (Section IV-C) to express the effect data subject
control mechanisms would have on those data flows. Likewise,
Non-compliance considers external legal aspects (e.g., ‘is there
an appropriate lawful ground for collection and processing?’),
and complementary perspectives on the system such as that
of data management, e.g. ‘how long is the data kept in the
system? Is there automated removal or archiving, etc?’ and
elements of the security architecture that may have privacy
implications.

As neither types of information are represented in the DFD
that was used for this analysis, the automated approach of
SPARTA is currently not capable of correctly taking them into
account. This outcome highlights and confirms the necessity
to further improve the expressiveness of the DFD notation [24]
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in function of automated threat analysis as performed by tools
such as SPARTA.

D. In-Depth Analysis of High-Risk Threats

Having identified the DFD elements associated with threats
in the “High Risk” category, it is important to determine the
corresponding data flows. This understanding is crucial to see
which part of the Solid protocol needs improvement to mitigate
these threats. We do not discuss “Unawareness” and “Non-
compliance” threats with “High Risk” in this part. In what
follows we explain these threats for each DFD element in
detail.

1) User: “Non-repudiation” threats apply to both data flows
that users send, namely “Log-in” and “IDP info,” as they can
be traced back to a specific sender. Consequently, the users are
unable to deny having sent these data flows at a later time.

2) Pod Provider: “Information Disclosure” is associated
with the financial data stored in all data stores, as they lack
encryption. “Denial of Service” threats are relevant to all
data flows connected to pod providers, potentially causing
users to be unable to access their financial data due to the
single point of failure issue. The “Elevation of privilege” threat
raises two concerns. Firstly, if pod providers are compromised,
adversaries can elevate the privilege of any entity at will.
Secondly, although pod providers should only collect users’
data to send them when needed, having the ability to read
these data leads to the “Elevation of Privilege” on their side.

Due to the collection of all users’ data in plain text within
the data stores of pod providers, and the association of data
requests with unique WebIDs, we have “Linking,” “Identify-
ing,” “Detecting,” and “Data Disclosure” threats at the pod
providers sides.

All the high-risk threats mentioned are associated with the
data flows connecting to the pod providers, encompassing both
the requests for data using access tokens and the financial data.

3) Application: The application holds a critical responsi-
bility of receiving and managing crucial components such
as the access token, authorization token, and financial data.

Consequently, if the application is compromised by a “Denial
of Service” threat, the users cannot access their data.

Given that applications have the ability to establish con-
nections between user identities, their WebIDs, and associated
data, there are high-risk threats of “Linking,” “Identifying,”
and “Data Disclosure” threats at the application’s side. These
high-risk threats are associated with all data flows connected
to this particular element.

4) Aggregator: “Denial of Service” threats are specifically
linked to the access token and the data the aggregator receives.
Hence, it is unrelated to the aggregated data.

“Linking,” “Identifying,” and “Data Disclosure” threats are
located on the aggregators as they receive the plain-text
data associated with some unique WebIDs. Moreover, all the
requests are linkable to some unique WebIDs.

5) Data: As this element represents a data flow, it is
susceptible to high-risk threats such as “Denial of Service,”
“Linking,” “Identifying,” and “Data Disclosure” wherever it is
present.

VI. CONCLUSION

In this paper, we investigated the security and privacy
threats in Solid using STRIDE and LINDDUN threat modeling
methodologies in the SPARTA tool. We performed this anal-
ysis on Solid’s Financial Analytics application case, allowing
us to assign risk estimates to each element and asset to get the
accurate importance of residual threats. The primary objective
was to determine how much Solid already mitigates the threats
and which remaining ones deserve more attention.

Our results show that the current Solid protocol specification
mitigates many possible security threats. About half of all
security threats are fully mitigated or irrelevant due to specific
defenses inside the Solid protocol. However, several high-risk
security threats remain, which Solid does not yet prevent in
our trust model of honest-but-curious providers.

The results for privacy threats are different. Although pri-
vacy is an important motivator and selling point of Solid, little
mitigations exist in today’s Solid protocol. Only a few privacy



threats are fully mitigated in Solid, and almost all LINDDUN
threat categories apply to all medium or high-risk entities.

The findings presented in this paper identify the prioritiza-
tion of critical threats that require further mitigation. We have
also identified the locations of high-risk threats and explored
the reasons behind these risks. The primary causes for all
threats, except “Denial of Service,” can be summarized as
follows:

« The financial data being sent to the pod providers in a
way that can be decrypted, which allows them to read the
data.

o All communications and data collections within the Solid
system being associated with unique WebIDs, which are
linked to unique identities stored in the identity providers.

Therefore, given our assumption that the providers are semi-
honest, they can undesirably gain information from the agents.
The second cause highlights the need for privacy-enhancing
technologies not only in the collected data but also in the
identification and authorization protocols. Only by improving
these protocols can we enhance the privacy aspect of the
authentication protocol.

As a general guideline for Solid’s developers, we propose
the following ways to mitigate the critical threats in Solid.

o Confidentiality: The agent’s (owner’s) data should be en-
crypted to permit decryption solely by authorized agents
and applications designated by the data owner. Attribute-
based encryption (ABE) can be a viable option as it
prevents pod providers from accessing their users’ data
while allowing the users to have control over who can
decrypt their data.

o Privacy: All transactions and data within Solid are linked
to unique WeblIDs throughout the system, and these
WeblIDs are associated with the registration data of users
maintained by identity providers. Consequently, if all
providers collude, then the privacy objectives of this
system could be compromised. Techniques like Anony-
mous Credentials and Zero-Knowledge Proofs can ad-
dress these challenges.

o Availability: All the information of an agent, such as
WeblIDs and access control lists, is stored by a single
identity provider. Consequently, decision-making during
authentication heavily relies on the continuous availabil-
ity of these identity providers. Similarly, one pod provider
exclusively holds an agent’s data (e.g., financial data). As
a result, a compromise due to a DoS attack on any of
these providers could lead to data loss or authentication
issues for the affected users. To mitigate these risks,
one can implement Threshold Authentication to distribute
decision-making during authentication and employ Secret
Sharing to distribute agents’ data across different pod
providers while securing the original data from the pod
providers’ direct access.

Our research serves as a road map for future endeavors,

enabling the design of more privacy-preserving or crypto-
graphic protocols fitting Solid’s structure. These protocols

can effectively mitigate the threats by first addressing threats
with higher risk levels. We have shared the findings with the
Solid team and are now focusing on developing novel security
measures for future work.
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