
You Don’t Need a Ledger: Lightweight Decentralized
Consensus Between Mobile Web Clients

Kristof Jannes
imec-DistriNet, KU Leuven

kristof.jannes@cs.kuleuven.be

Bert Lagaisse
imec-DistriNet, KU Leuven
bert.lagaisse@cs.kuleuven.be

Wouter Joosen
imec-DistriNet, KU Leuven

wouter.joosen@cs.kuleuven.be

Abstract
Centralized systems relying on a trusted third party are be-
ing replaced by decentralized systems using proof-of-work
blockchains to reach consensus between multiple mistrust-
ing parties. Due to the high energy usage of such systems,
many solutions using a Byzantine fault-tolerant algorithm to
reach consensus have emerged. While those systems solve
the energy and safety concerns of proof-of-work blockchains,
they still require a peer to store the full ledger and need a
complex backend infrastructure to get started.

This paper presents a lightweight middleware running in
the browser, designed for small businesses and end-users un-
able to set up a complex private blockchain business network.
The middleware for consensus runs entirely in the browser,
with only a small server-side component used for the peer-
to-peer discovery. We achieve fast confirmation times while
guaranteeing safety and liveness for honest users. We also do
not maintain a ledger, reducing the overall storage footprint.

CCS Concepts • Security and privacy → Distributed
systems security; •Networks→Peer-to-peer protocols;
• Information systems→Web applications.

Keywords decentralized web applications, lightweight con-
sensus, Byzantine fault tolerance, peer-to-peer

ACM Reference Format:
Kristof Jannes, Bert Lagaisse, and Wouter Joosen. 2019. You Don’t
Need a Ledger: Lightweight Decentralized Consensus Between
Mobile Web Clients. In 3rd Workshop on Scalable and Resilient In-
frastructures for Distributed Ledgers (SERIAL ’19), December 9–13,
2019, Davis, CA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3366611.3368143

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SERIAL ’19, December 9–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7029-5/19/12. . . $15.00
https://doi.org/10.1145/3366611.3368143

1 Introduction
Today, the web browser is an important platform to deploy
applications [9]. They do not require installation and can be
updated by simply serving the new source code. Moreover,
they can run on all kinds of devices, even on mobile phones.
However, current peer-to-peer (P2P) data-synchronization
systems for the browser like Legion [20] and Yjs [14] fo-
cus on full replication and consistency, rather than security.
They allow users to modify all data and lack Byzantine fault-
tolerance (BFT). BFT means that a system can both tolerate
crash failures, as well as malicious nodes.

Traditionally, consensus is often achieved using a central-
ized trusted party. While this is beneficial for performance,
too much power is given to one entity, who can decide to
manipulate the consensus and charge high transaction costs.
When trust is lacking, one can opt formore decentralized con-
sensus between several mistrusting parties. Starting with Bit-
coin [13], many proof-of-work (PoW) blockchains emerged.
However, they are too slow formany use-cases. Bitcoin needs
about one hour to confirm a transaction with high proba-
bility. Moreover, PoW needs a lot of processing power and
energy which are not available on mobile devices. They also
store an immutable ledger on every device, leading to large
storage overhead. Lightweight clients that use a proxy node
to communicate with the blockchain exist, but someone still
needs to set up the full-node and clients need to trust it. An-
other type of blockchain uses a BFT consensus protocol. E.g.
Hyperledger Fabric [1] can use PBFT [5] or BFT-SMART [3]
and achieves high throughput and low latency. However,
it requires a complex backend infrastructure, with many
different servers, and still needs to store the full ledger.
The contribution of this paper is a lightweight middle-

ware for decentralized consensus that can be used by mobile
clients in their web browser. The middleware is designed to
function between small businesses without the infrastructure
and capital to set up a private permissioned blockchain, and
without the trust in a trusted third-party. The middleware:

1. tolerates both crash failures as well as malicious nodes,
2. guarantees consensus finality once a decision is made,
3. uses an efficient state-based replication protocol to

propagate updates and votes through the P2P network,
4. and is designed for lightweight setups, with only one

backend component, used for the P2P discovery.
By using a state-based protocol, there is no need to keep an
operation log to synchronize offline clients.

3

https://doi.org/10.1145/3366611.3368143
https://doi.org/10.1145/3366611.3368143
https://doi.org/10.1145/3366611.3368143

SERIAL ’19, December 9–13, 2019, Davis, CA, USA Kristof Jannes, Bert Lagaisse, and Wouter Joosen

This paper first presents the motivation using two indus-
trial case studies and lists the requirements in Section 2.
Section 3 explains the architecture and the consensus proto-
col. Section 4 shows the initial evaluation. We discuss related
work in Section 5 and conclude in Section 6.

2 Motivation and requirements
In general, the middleware is designed to set up a network
between mutually mistrusting parties (called participants),
who want to offer integrated services to their customers.
This section first describes two (anonymized) industrial case
studies. Then it states the generic requirements for our mid-
dleware. At last, it discusses the adversary model.

eLoyalty. eLoyalty offers white-label software for loyalty
programs. This is normally deployed as a client-server sys-
tem, where the backend of eLoyalty handles all requests
from the client systems deployed at the customer’s premises.
Multiple companies can use this system to integrate their
loyalty network. This model works well for large companies,
but smaller local stores are often not able to participate due
to the high legal burden and monetary cost to set up such a
consortium. Decentralization is especially important for lo-
cal farmers’ markets in emerging countries, which lack trust
in centralized large corporations or the government. This
use-case consists of several small stores who want to create
an integrated loyalty network, where customers can redeem
their points at any participant. Store A can award a customer
with some points, which they can redeem at any other store
B of the consortium. Later, store A has to pay back store B
for the reward given to the customer. There are two misuse
cases. First, the customer can try to use its loyalty points
at multiple places, leading to the classic double-spending
problem. Second, store A can refuse to pay back store B.

eLoans. eLoans is an integrated network of banks (the par-
ticipants) that offer loans to companies using unpaid invoices
as collateral. A company can use an unpaid invoice at any
bank of the network, but the bank where the invoice will
be paid need to verify that it isn’t already paid yet. The use-
case has four misuse cases. A company can use the same
invoice twice or use a fake one. The banks can try to boycott
each other by not verifying an invoice or can collude with
companies to let other banks accept fake invoices.

Requirements. This section lists four general requirements,
based on those two case studies. First, double-spending of
points or invoices (in general: tokens) needs to be prevented,
because the customers and the participants do not trust each
other. Second, different participants cannot cause any harm
to each other since they also do not fully trust each other.
Third, the solution needs to be decentralized, with no central
point of failure or trust. At last, the solution needs to be
lightweight, for use in mobile environments, e.g. a mobile
device at the local farmers’ market. Therefore, it needs to be

WWW

P2P
discovery

client

client

client

client

Figure 1. Overall architecture of the web middleware.

both energy and storage efficient. The network needs to be
easy to set up, without a complex backend infrastructure.

Adversary model. Only 1
3
× (𝑛 − 1) of the 𝑛 participants of

the network can be malicious or controlled by an attacker,
which is the best you can do for asynchronous Byzantine
agreement [4]. Malicious peers may, however, collude and
coordinate their attack. Furthermore, we assume that no at-
tacker can delay or interrupt the network forever: eventually,
some stream of messages needs to come through. Attackers
also cannot control the signaling and TURN server (used
for the P2P discovery). They cannot break the used signa-
tures (elliptic curve P-256 and SHA-256) or find collisions
for the used hash function (SHA-256). They cannot modify
the encrypted WebRTC messages (built-in into the browser).

3 Middleware for lightweight consensus
This section first explains the web-based architecture of the
middleware with its lightweight setup. Next, it explains how
tokens are issued and how consensus is reached. It ends with
the properties and trade-offs of the middleware.

3.1 Middleware architecture and data structures
The middleware is designed to run in web browsers on mo-
bile devices, with little server-side infrastructure. Figure 1
shows the architecture. There are two server-side compo-
nents required. The first is used for the P2P discovery. It
implements a signaling protocol and TURN service [9] and
is only used to bootstrap the P2P connections. The second
is the web server (WWW) which serves the static resources
to the browsers. This requirement can be removed when all
clients have the required files stored on disk.

The client-side middleware consists of a JavaScript library
that runs into the browser and includes all logic for the con-
sensus protocol between the clients. The clients also replicate
the full database locally. The middleware uses signed data
structures to protect against unauthorizedmodifications. The
signatures make sure a token cannot be forged. But to make
sure that the owner cannot redeem the same token twice at
different partners, the nodes first vote where the token can

4

You Don’t Need a Ledger: Lightweight Decentralized Consensus Between Mobile Web Clients SERIAL ’19, December 9–13, 2019, Davis, CA, USA

be redeemed. The partner only accepts a token and gives the
real-life reward when a majority of the nodes agree.
As tokens we use tickets. Tickets can only be used once:

they get issued and can be redeemed later. In contrast to
coins, used by most blockchains, where you can transfer
ownership to another user, instead of destroying the token.
By using tickets, we don’t need to keep track of who owns
which coin, which is typically tracked via a distributed ledger.
Furthermore, the state is synchronized using a state-based
replication protocol. Thanks to those two improvements, our
solution does not require any kind of distributed ledger.

State-based replication protocol. Between the nodes, data
is exchanged via a replication protocol using state-based
CRDTs [17] which only keeps track of the current state.
By using a state-based approach, rather than the operation-
based approach used in most P2P networks and blockchains,
nodes do not need to store the whole operation log forever.
Operation-based approaches keep track of who still needs to
receive which operations, requiring solutions like sequence
numbers, version vectors or a total ordering.
After some time, redeemed tokens can be removed from

the local datastore. This will not lead to double-spending
since only tokens that are present in the datastore can be
redeemed. However, a malicious node might try to add a
removed token again to the datastore. Since the signatures
will still be valid, other nodes would accept it. To solve this
problem, each token contains a timestamp indicating when a
token expires. The expiration time can be set to a few weeks,
so that nodes that are offline for some time, are still able to
receive all tokens. No node will accept a new token in its
datastore if it is already expired and only tokens present in
the local datastore can be redeemed. Once a token is added
to the local datastore, it stays valid forever, regardless of the
timestamp, until it is redeemed. This ensures that the total
storage required only grows with the number of valid tokens
that are not yet redeemed. In contrast to blockchains that
keep a ledger and growwith the total number of transactions.

Membership. The protocol is designed for a closed group
of partners who have a digital identity (public key) and are
known to each other. New members can be added to the net-
work, if the other partners agree, using the same consensus
protocol as described in the next section, except that there
is a manual user interaction required to vote. The existing
members need to review the new member, and only when
they agree to add the new member, they will vote to accept
him. When 2

3
× 𝑛 + 1 members agree, the new member is

considered part of the consortium and can issue tokens and
place votes. The manual verification of partners is impor-
tant in our two case studies since a token often represents
a promise from one partner to the others. E.g. a promise
that a certain invoice is valid and not yet paid. To make sure
a change in the membership does not endanger the safety
guarantees, members can only vote for tokens that are issued

1.
2.

3.
3. 3.

Figure 2. Part 1: protocol to issue tokens.

after they are accepted. When a token is issued, it includes
the identifiers of the members who are allowed to vote for it,
so every node always knows when the required majority is
reached, regardless of membership changes in the meantime.

3.2 Consensus protocol
The consensus protocol has two parts. First, a token is given
to a customer by a node of the consortium (Figure 2). Second,
the customer redeems that token to gain something with a
different node (Figure 3). This requires distributed consensus
to protect against double-spending.

Protocol to issue tokens (Figure 2). The customer asks a
node for a token (step 1). This happens when a customer
buys something and gets rewarded with loyalty points, or
when a customer asks their bank to verify an invoice. The
customer also provides its public key, so they can later prove
ownership of the token with the private key when redeeming
the token. The node verifies the provided information and
decides to issue a new token representing some value. The
token is stored in the local datastore, and its ID is sent back
to the customer (step 2). Later, when the node is online, the
new token is synchronized to the other nodes (step 3). Once
the token is replicated, part 1 is completed and the customer
can now redeem the token at any node. The token can also
be sent directly to the customer, who can ask any node to
add it to the datastore and replicate it to the other nodes.

Protocol to redeem tokens (Figure 3). In part 2, the cus-
tomer can go to a different node and redeem the token. The
customer sends a request to the node, together with the ID
of the token and the ID of the node, signed by its private key
(step 1). Because this request is signed, the node is certain
that the customer is the owner of the token. The node verifies
the signature. If the token is not present in the local datas-
tore, the node does not accept it and the protocol is aborted.
If the token is already redeemed, the customer is trying to
commit fraud, and the protocol is aborted. Otherwise, the
node proposes itself as a candidate to redeem it, using the
request from the customer as a signed proof that the node
is allowed to do this. So, no node can start a vote without
the cooperation of the customer. The node then votes for
itself and stores the signed vote in the local datastore and
replicates it to the other nodes (step 2). When a node re-
ceives a new vote, it verifies the signatures and votes for the
current winner and replicates the vote to the other nodes

5

SERIAL ’19, December 9–13, 2019, Davis, CA, USA Kristof Jannes, Bert Lagaisse, and Wouter Joosen

1.

2. 3.
2.

3.
2.

3.
4.

Figure 3. Part 2: protocol to redeem tokens.

(step 3). The original node waits for other votes to come in,
and once a majority agrees, it accepts the token and gives
the customer its reward (step 4). The maximum number of
Byzantine nodes that can be tolerated is 1

3
× (𝑛 − 1), where 𝑛

is the total number of nodes. The majority of votes required
before executing step 4 is 2

3
× 𝑛 + 1. Once a node has this

many votes for the same value, consensus is finalized and
the node knows that it will be recognized by all other nodes.

Detect and punish dishonest nodes. Since all data and
votes are signed, other nodes can detect when a node acts
maliciously by sending false data. E.g. two conflicting votes
for the same token, signed by the same node. Using this
cryptographic proof, you can go to the other partners and
decide if the dishonest partner can remain in the consortium
or should be removed. A node, therefore, has little to gain
for not following the protocol, any malicious activity will
be detected and can be punished by removing the dishonest
member. Nodes that simply do nothing can also be detected
by the absence of votes. Again, the partners can decide to
remove the lazy partner from the consortium.

3.3 Discussion
For the remainder of this section, we discuss some impor-
tant properties of the consensus protocol described in the
previous part: safety and liveness, the notion of configurable
consensus and trade-offs of the middleware.

Safety and liveness. Safety means that nothing bad can
happen, i.e. once one node decides that a ticket is redeemed
at node X, no other node will ever decide that it is redeemed
at node Y. The protocol guarantees safety because a node
always waits for enough votes before deciding (2

3
× 𝑛 + 1).

Liveness means that eventually something good happens,
i.e. the network makes progress, and will eventually decide.
Liveness is only guaranteed if the customer itself is honest.
With an honest customer, there can only be one valid candi-
date to redeem the token, since an honest customer does not
try to double-spend the token. Eventually, all honest nodes
will have received the new proposal and voted for the only
candidate to redeem the token. No dishonest node can try to
change the outcome by proposing a different candidate since
it does not have access to the private key of the customer.
When the customer itself is dishonest, multiple candidates
can be proposed, since the customer can try to double-spend
the token. As long as all nodes wait for 2

3
× 𝑛 + 1 votes, they

can be sure that the token is not yet spent elsewhere, and
safety is ensured. However, the system can end up in a split
vote, where there are multiple candidates for the same token
whom all received some votes. But none of them have the
required majority to decide. In this case, the customer loses
its value behind the token. We do not guarantee liveness for
dishonest customers, just like in the Avalanche protocol [16].

Configurable consensus. The protocol requires at least 2
3
×

𝑛 + 1 nodes to be online, receive the votes, vote themselves
and replicate these votes back to the original node before a
token can be accepted. For small transactions or when you
know and trust the customer, there is no need to wait for
confirmation. Instead, you can collect the signed request and
give the real-life reward immediately to the customer. Later
you can use the signed request from the customer to redeem
the token. This scenario makes sense for the eLoans case
where the identity of the customers is known, and the legal
system can help when a customer tries to fraud banks. A
third option is that you wait for some confirmations of other
nodes to increase the chance that the token is not yet spent.
But you do not wait for consensus finality before handing
over the real-life reward. This makes sense for the eLoyalty
case where you want to accept tokens fast (as customers are
waiting to checkout) while not knowing the full identity of
the customer. Most of the time, loyalty points are not worth
that much, and you don’t lose much value when a customer
turns out malicious. In both cases, you can still decide to
wait for consensus finality when you estimate that the risk
is too high. E.g. it is a new customer who you’ve never seen,
or someone tries to redeem many loyalty points at once.

Trade-offs. The protocol described here is designed to work
in an asynchronous environment, i.e. there are no bounds
on the time a node might take. The FLP impossibility [7]
states that no algorithm can solve consensus in such a setting.
As a trade-off, we forfeit liveness for dishonest nodes. The
system stays functional, but the tokens from the dishonest
customer might be blocked forever and lost. Furthermore, we
use tickets instead of coins, so for each token, the nodes only
need to decide once who has redeemed it. The Byzantine
tolerant voting protocol only requires one round, in contrast
to other BFT protocols, because nodes cannot change their
minds and vote for a different value once they voted. Honest
customers do not try to double-spend tokens, so there is only
one possible value to decide on. Not having a ledger sacrifices
auditability of the past transactions, but since tickets can
only be used once, there is little use for it.

4 Evaluation
The evaluation consists of three parts. First, we revisit the
case studies and describe which misuse cases are handled
through the middleware, and which are handled outside the
system. Second, we implemented the middleware in a web

6

You Don’t Need a Ledger: Lightweight Decentralized Consensus Between Mobile Web Clients SERIAL ’19, December 9–13, 2019, Davis, CA, USA

application (plain JavaScript, no plugins required) and eval-
uate the performance. Third, we compare our lightweight
middleware to the infrastructure that is needed to set up a
permissioned Hyperledger Fabric blockchain.

Revisiting the case studies. The consensus protocol, that
we use before tokens are redeemed, prevents the double-
spending attacks. In the eLoyalty case, a store could refuse to
pay back another store. One can go to the local government
to ask for resolution (since they have digitally signed proofs)
or the misbehaving participant can be removed from the
network if the other participants agree. For the eLoan case,
the consensus also solves the possibility to boycott other
banks since only the customer can decide who can redeem
the token. Still, customers can try to use fake invoices or even
collude with banks to get fake invoices admitted. Therefore,
banks are responsible when they validate invoices and issue
tokens. Their funds are on the line when an invoice turns
out to be non-existing (handled outside the network).

Performance evaluation. We implemented this protocol in
a JavaScript library which can be executed in a web browser.
In our experiments, we start 10 VMs in the Azure public
cloud (8 CPUs and 16 GB RAM) in the same data-center, run-
ning 1-6 Docker containers with a Chromium web browser
in each. We also have one server node running, which is
used for bootstrapping the P2P connections. To simulate a
real environment, we used the Linux tc tool to increase the
latency to the average 4G network in the US (60 ms [21]).
We’re interested in the time it takes for updates to prop-

agate to all nodes. We measure these times both with the
BFT protocol, as well as without, to measure the overhead
of going from a fully trusted approach to one that tolerates
Byzantine behavior. An update is a single token that gets
redeemed. It starts with one node trying to redeem a token
and ends when all nodes know that the token is redeemed.
For the experiments with BFT, this requires that all nodes re-
ceived at least 2

3
×𝑛+1 correct votes, while for those without

BFT, one is enough. Another metric is the confirmation time,
this is the time it takes for the node that made the update, to
know that the network has accepted the update. This confir-
mation time is a lower bound, and only valid when all nodes
follow the protocol. With Byzantine nodes, the confirmation
time will be closer to the synchronization time.

Table 1 shows the results for these experiments for differ-
ent number of nodes. Each second, one token is redeemed.
We list both the 50th percentile (the mean), as well as the
99th percentile (most of the users [6]). With only 10 nodes,
consensus can be reached in 1.2 s. This increases to 8.3 s for
50 nodes. Going to 60 nodes leads to a 3-fold increase in time
(Figure 4) because the messages that are sent are becoming
too large. This is because the protocol needs one vote for
each node with the correct signatures, which all need to be
verified. The protocol is, therefore, most useful in the range
of 10-50 nodes.

Table 1. Synchronization and confirmation times with and
without the BFT voting protocol, showing both the mean
and the 99th percentile. There are no confirmation times for
the results without BFT, since nodes don’t need to wait.

nodes 10 20 30 40 50 60
With BFT

Sync. time [s] 50% 1.0 1.3 2.7 4.0 6.0 14.0
99% 1.4 2.0 3.9 5.8 9.9 28.6

Conf. time [s] 50% 0.5 1.0 2.3 3.3 4.9 11.9
99% 1.2 1.9 3.5 4.9 8.3 24.6

Without BFT
Sync. time [s] 50% 0.6 0.7 0.8 1.0 1.0 1.2

99% 0.9 1.3 1.8 1.9 1.9 3.1

10

20

0

30 s
Time

20 30 40 5010 60
Number of nodes

Sync. time Conf. time Without BFT

Figure 4. Synchronization and confirmation times for the
99th percentile. The middleware scales up to 50 nodes, each
node can potentially serve 1000s of customers.

Infrastructure requirements. We now compare the light-
weight architecture (Section 3.1) to the infrastructure re-
quired to set up Hyperledger Fabric using Hyperledger Com-
poser. First, a web server is required, to host the files for the
web-based UI. This web application is not responsible for
the consensus, instead, it communicates with a REST server
that interacts with the actual blockchain network. Since this
REST server contains the private wallet to sign the transac-
tions, each participant needs its own. Next to the web and
REST clients, it requires a blockchain network consisting of
peers and orderers. The peers are required to store the ledger
and execute the chain-code, while the orderers establish a to-
tal order on the transactions. The peers and the REST servers
need a CouchDB server for each of them to maintain state.
Each participant must have its own peers, REST server and
CouchDB servers. At last, a membership service provider is
needed, with one CA server per participant.
In eLoyalty, where small stores want to integrate their

loyalty networks, setting up this backend infrastructure is
too much work. They lack the knowledge and budget for this
kind of deployment. The pluggable architecture of Fabric
allows for highly customized applications and consensus.
However, emerging markets and local stores can benefit
from a lightweight approach that runs inside a browser.

7

SERIAL ’19, December 9–13, 2019, Davis, CA, USA Kristof Jannes, Bert Lagaisse, and Wouter Joosen

5 Related work
The related work consists of three parts. First, the existing
P2P systems for web browsers which run in a fully trusted
environment. Second, the PoW blockchains. And third, the
blockchains that use a BFT consensus protocol.

JavaScript frameworks like Legion [20] and Yjs [14] have
proven that the web is suitable for P2P interactions [9]. How-
ever, they all assume that members can do any operation
they want or even lack any form of authentication (Yjs).
PoW blockchains such as Bitcoin [13] protect against

double-spending and tolerate malicious users, but are not
suitable for small, mobile devices. It requires high computing
power, comparable to that of a small country [15], as well as
storage space. The size of the Bitcoin blockchain in August
2019 is 230 GB. Solutions like the simplified payments proto-
col [13] reduce this by only storing the headers, but the size
still grows over time. PoW also has high confirmation times,
i.e. it takes a long time before a transaction is accepted. There
is also no consensus finality, multiple blocks can be mined
at the same time, resulting in different forks. Transactions
can still be undone by a longer chain in the future.

Another type of blockchains is not based on PoW, but on
a BFT protocol. They have higher performance with less
energy and offer proven safety properties [2]. Hyperledger
Fabric [1] is a loose architecture of components and sup-
ports different consensus protocols. HoneyBadger [12] is
an asynchronous BFT protocol and doesn’t rely on timing
assumptions. It uses threshold encryption for censorship
resistance and is based on atomic broadcast. Algorand [8] is
based on Verifiable Random Functions [11] to select which
nodes can participate in the agreement on the next set of
transactions. Avalanche [16] uses a metastable mechanism
to reach consensus. It is a probabilistic approach that con-
verges fast, but without any guarantees. All these approaches
maintain a distributed ledger with all the operations.

6 Conclusion and future work
This paper presented a lightweight middleware that can be
used to reach decentralized consensus between multiple mis-
trusting parties and prevent double-spending of resources.
We showed, using two industrial case studies, that you don’t
always need a ledger to solve the double-spending problem,
even when there is no centralized, trusted party. The mid-
dleware is lightweight and designed to run into the browser,
with little bootstrapping needed.

We successfully tested the middleware with 50 concur-
rent nodes and achieved confirmation times which are less
than 10 s. However, scaling further, both in the number of
nodes and the throughput of the system, is an open problem.
Three improvements can increase the scalability. First, we
can replace the use of elliptic curve signatures to more ag-
gregate signatures, where multiple nodes together create a
single signature, e.g. collective signatures [19] or threshold

signatures [18]. The second improvement can be found in
the P2P network. In the current network, peers connect to
other peers randomly. By moving to a structured P2P net-
work, such as a fat-tree overlay [10], the replication can flow
through the network more efficient. At last, the consensus
protocol is now used for each token individually. However,
blockchains typically batch multiple transactions into a sin-
gle block and achieve consensus on those blocks. Batching
can further improve the throughput and scalability.

References
[1] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De

Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidha-
ran, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolić, S. Cocco Weed, and J. Yellick. 2018.
Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains (EuroSys ’18).

[2] C. Berger and H. P. Reiser. 2018. Scaling Byzantine Consensus: A
Broad Analysis (SERIAL’18).

[3] A. Bessani, J. Sousa, and E. E. P. Alchieri. 2014. State Machine Replica-
tion for the Masses with BFT-SMART (DSN 2014).

[4] G. Bracha and S. Toueg. 1985. Asynchronous Consensus and Broadcast
Protocols. J. ACM (1985).

[5] M. Castro and B. Liskov. 1999. Practical Byzantine fault tolerance
(OSDI ’99).

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.
Pilchin, S. Sivasubramanian, P. Vosshall, andW. Vogels. 2007. Dynamo:
amazon’s highly available key-value store (SOSP ’07).

[7] C. Dwork, N. Lynch, and L. Stockmeyer. 1988. Consensus in the
Presence of Partial Synchrony. J. ACM (1988).

[8] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. 2017. Algo-
rand: Scaling Byzantine Agreements for Cryptocurrencies (SOSP’17).

[9] K. Jannes, B. Lagaisse, and W. Joosen. 2019. The Web Browser As Dis-
tributed Application Server: Towards Decentralized Web Applications
in the Edge (EdgeSys ’19).

[10] E. Lavoie, L. Hendren, F. Desprez, and M. Correia. 2019. Genet: A
Quickly Scalable Fat-Tree Overlay for Personal Volunteer Computing
using WebRTC (SASO ’19).

[11] S. Micali, M. Rabin, and S. Vadhan. 1999. Verifiable random functions
(FOCS ’99).

[12] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. 2016. The Honey
Badger of BFT Protocols (CCS ’16).

[13] S. Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
[14] P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma. 2015. Yjs: A Frame-

work for Near Real-Time P2P Shared Editing on Arbitrary Data Types
(ICWE 2015).

[15] K. J. O’Dwyer and D. Malone. 2014. Bitcoin mining and its energy
footprint (ISSC 2014/CIICT 2014).

[16] Team Rocket. 2018. Snowflake to avalanche: A novel metastable consen-
sus protocol family for cryptocurrencies.

[17] M. Shapiro, N. Perguiça, C. Baquero, and M. Zawirski. 2011. Conflict-
Free Replicated Data Types. In SSS 2011.

[18] V. Shoup. 2000. Practical threshold signatures (Eurocrypt 2000).
[19] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N.

Gailly, I. Khoffi, and B. Ford. 2016. Keeping Authorities "Honest or
Bust" with Decentralized Witness Cosigning (SP ’16).

[20] A. van der Linde, P. Fouto, J. Leitão, N. Preguiça, S. Castiñeira, and A.
Bieniusa. 2017. Legion: Enriching Internet Services with Peer-to-Peer
Interactions (WWW ’17).

[21] 2019. opensignal.com. https://www.opensignal.com/reports/2019/01/
usa/mobile-network-experience.

8

https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience
https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience

	Abstract
	1 Introduction
	2 Motivation and requirements
	3 Middleware for lightweight consensus
	3.1 Middleware architecture and data structures
	3.2 Consensus protocol
	3.3 Discussion

	4 Evaluation
	5 Related work
	6 Conclusion and future work
	References

