
You Don’t Need a Ledger:
Lightweight Decentralized Consensus
Between Mobile Web Clients
SERIAL ’19

Kristof Jannes, Bert Lagaisse, Wouter Joosen
9 December 2019





eLoyalty: loyalty points across merchants

Integrated loyalty programs between several small stores
Redeem points at any participating store

Double-spending problem
Customer spends same loyalty point twice

Decentralized: no central authority
Merchants do not fully trust each other

3



Your local merchant can’t run a blockchain node

Expensive hardware requirements
Requires large amount of processing power and storage space

Complex backend setup
Requiring large infrastructure to setup permissioned network

Hard to setup consortia between companies
High legal and monetary burden

4







eLoan: loans with unpaid invoices as collateral

Financial institutions offer loans to companies
Using unpaid invoices as collateral, verified by the network

Double-spending problem
Company uses invoice twice

Financial institutions boycott each other
They all want to give the loan themselves

7



Your bank is not going to rely on proof-of-work

No consensus finality
Forks can happen with decreasing probability over time

Blockchain keeps track of all data
Can impose problems with privacy laws such as GDPR

8



You Don’t Need a Ledger:
Lightweight Decentralized Consensus
Between Mobile Web Clients

WWW

P2P
discovery

client

client

client

client

Lightweight middleware for consensus
Architecture and consensus protocol

Evaluation
Performance and infrastructure

Zooming out
State-of-the-art and future work



You Don’t Need a Ledger:
Lightweight Decentralized Consensus
Between Mobile Web Clients

WWW

P2P
discovery

client

client

client

client

Lightweight middleware for consensus
Architecture and consensus protocol

Evaluation
Performance and infrastructure

Zooming out
State-of-the-art and future work



Use peer-to-peer state-synchronization
with voting for Byzantine fault-tolerance

State-based approach using signed data-structures
No ledger with history as in operation-based approaches

Peer-to-peer state-synchronization
No central component that manages the system

Voting for Byzantine fault-tolerance
Tolerate both crash failures as well as malicious nodes

Lightweight setup
Client-side peer-to-peer network running in the browser

11



The lightweight architecture
requires only two small backend components

WWW

P2P
discovery

client

client

client

client

12



There is no distributed ledger with coins,
only tickets which can be used only once

Coins can be used forever
Ownership changes each time it is used

Tickets can be used only once
Ticket is redeemed when it is used

Only track the unspent tickets
No need for a ledger

13



Protocol has two steps

1. Issue new token

2. Redeem token for asset (e.g. loan or loyalty reward)

14



Protocol to issue tokens

1. Customer asks a new token from a node
Providing its public key and application-specific info

1.
2.

3.
3. 3.

15



Protocol to issue tokens

1. Customer asks a new token from a node
2. Node verifies the info and creates a new token

Stores the token in the local database and sends it back to the customer

1.
2.

3.
3. 3.

16



Protocol to issue tokens

1. Customer asks a new token from a node
2. Node verifies the info and creates a new token
3. Node synchronizes token asynchronously with other nodes

Using a signature to guarantee authenticity and a timestamp against replay attacks

1.
2.

3.
3. 3.

17



Protocol to redeem tokens

1. Customer sends ID of token to node and asks to redeem it
Using its private key to prove ownership

1.

2. 3.
2.

3.
2.

3.
4.

18



Protocol to redeem tokens

1. Customer sends ID of token to node and asks to redeem it
2. Node verifies token and starts a vote to redeem it

A node can only start a vote when customer has sent his signature

1.

2. 3.
2.

3.
2.

3.
4.

19



Protocol to redeem tokens

1. Customer sends ID of token to node and asks to redeem it
2. Node verifies token and starts a vote to redeem it
3. Other nodes receive votes and vote themselves

Every node can vote exactly once for each token

1.

2. 3.
2.

3.
2.

3.
4.

20



Protocol to redeem tokens

1. Customer sends ID of token to node and asks to redeem it
2. Node verifies token and starts a vote to redeem it
3. Other nodes receive votes and vote themselves
4. Original node waits until it receives 2⁄3 × n + 1 of the votes

Gives the real-life product to the customer afterwards

1.

2. 3.
2.

3.
2.

3.
4.

21



The protocol guarantees liveness and safety
for honest customers

Safety: nothing bad happens
No double spending of tokens

Liveness: eventually something good happens
Tokens can actually be redeemed

Malicious customers can lock their tokens and lose them
But safety is still guaranteed

22



Adversary model

Tolerates up to 1⁄3 × (n - 1) byzantine nodes
Tolerating both crash failures and malicious nodes

Attacker cannot break the used cryptographic primitives
ECDSA with P-256 and SHA-256

P2P discovery service must be honest
Otherwise liveness will be broken due to network partitions

23



Designed for a closed group of members
with infrequent changes

Members can be added or removed using the same protocol
But with manual voting and verification

New members only participate in votes for new tokens
Membership is fixed on token creation

If too many members leave, older tokens become invalid
The 2⁄3 majority for those tokens cannot be reached anymore

24



You Don’t Need a Ledger:
Lightweight Decentralized Consensus
Between Mobile Web Clients

WWW

P2P
discovery

client

client

client

client

Lightweight middleware for consensus
Architecture and consensus protocol

Evaluation
Performance and infrastructure

Zooming out
State-of-the-art and future work



The middleware scales up to 50 nodes

10

20

0

30 s
Time

20 30 40 5010 60
Number of nodes

Synchronization time Confirmation time Without BFT

26



Each node can have 1000s of end-users

eLoyalty: nodes are the merchants
Scale: local farmer’s market or shopping street

eLoan: nodes are the financial institutions
Scale: small country with 50 different banks

27



The lightweight middleware requires
only two small backend components

This middleware
Web server, signaling server

Hyperledger Fabric using Hyperledger composer
Web server, peers, orderers, REST-, CouchDB- and CA-servers, membership service

28



You Don’t Need a Ledger:
Lightweight Decentralized Consensus
Between Mobile Web Clients

WWW

P2P
discovery

client

client

client

client

Lightweight middleware for consensus
Architecture and consensus protocol

Evaluation
Performance and infrastructure

Zooming out
State-of-the-art and future work



State-of-the-art and related work

Peer-to-peer data synchronization systems
Legion, Yjs

PoW blockchains
Bitcoin, Ethereum

Blockchains using BFT consensus
Hyperledger Fabric, HoneyBadger, Algorand, Avalanche

Off-chain protocols
Bitcoin lightning network

30



The middleware solves the double-spending problem
in a specific range of applications

Keep track of transient resources
Not for perpetual resources such as coins

Un-frequent membership changes
Members can leave and join at a slow rate

Up to 50 nodes that are online most of the time
Network can be unstable, some nodes may be offline

31



Challenges and future work

One ECDSA signature per token per node for consensus
Not scalable to 100-1000 nodes

Look into non-interactive signature aggregation schemes
E.g. BLS

Current P2P network is constructed randomly
Look into structured networks such as fat-tree overlay

32



You Don’t Need a Ledger:
Only keep the current state using signed data-structures

Lightweight Decentralized Consensus
Simple voting for asynchronous BFT between the clients

Between Mobile Web Clients
Running in a web browser on a mobile device

33



You Don’t Need a Ledger:
Lightweight Decentralized Consensus
Between Mobile Web Clients
SERIAL ’19

Kristof Jannes, Bert Lagaisse, Wouter Joosen
kristof.jannes@cs.kuleuven.be
9 December 2019


