Page 1 0of 13

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 1

OWebSync: Seamless Synchronization
of Distributed Web Clients

Kristof Jannes, Bert Lagaisse and Wouter Joosen

Abstract—Many enterprise software services are adopting a fully web-based architecture for both internal line-of-business
applications and for online customer-facing applications. Although wireless connections are becoming more ubiquitous and faster,
mobile employees and customers are often offline due to expected or unexpected network disruptions. Nevertheless, continuous
operation of the software is expected. This paper presents OWebSync: a web-based middleware for data synchronization in interactive
groupware with fast resynchronization of offline clients and continuous, interactive synchronization of online clients. To automatically
resolve conflicts, OWebSync implements a fine-grained data synchronization model and leverages state-based Conflict-free Replicated
Data Types. This middleware uses three main tactics to achieve the required interactive performance: Merkle-trees embedded in the
tree-structured data, virtual Merkle-tree levels, and message batching. Our comparative evaluation with available operation-based and
delta-state-based middleware solutions shows that OWebSync is especially better in operating in and recovering from offline settings
and network disruptions. In addition, OWebSync scales more efficiently over time, as it does not store version vectors or other

meta-data for all past clients.

Index Terms—CRDTs, Groupware, Web browsers, Eventual Consistency

1 INTRODUCTION

EB applications are the default architecture for many
W online software services, both for internal line-of-
business applications such as CRM, billing, and HR; as
well as for customer-facing services. Browser-based service
delivery fully abstracts the heterogeneity of the clients, solv-
ing the deployment and maintenance problems that come
with native applications. Nevertheless, native applications
are still used when rich and highly interactive GUIs are
required, or when applications must function offline for a
long time. The former reason is disappearing as HTML5 and
JavaScript are becoming more powerful. The latter reason
should be disappearing too with the arrival of WiFi, 4G and
5G ubiquitous wireless networks. In reality, connectivity is
often missing for minutes to hours. Mobile employees can
be working in cellars or tunnels, and customers sometimes
want to use a web-based service on an airplane.

Interactive groupware applications, such as collaborative
web applications with concurrent edits on shared data,
should offer prompt data synchronization with interactive
performance when online. We use the term synchronization
here to describe the process of keeping data of multiple
replicas eventual consistent by means of replication.

This paper focuses on prompt and seamless synchroniza-
tion when clients were offline due to network disruptions,
while maintaining interactive synchronization in the online
setting. The research of Nielsen on usability engineering [1]
states that remote interactions should take only 1-2 seconds
to keep the user experience seamless and interactive. Users
are annoyed after a 5 second waiting period and 10 seconds
is the absolute maximum before users leave the application.

o The authors are with imec-DistriNet, Department of Computer Science,
KU Leuven, Leuven, 3001 Belgium.
E-mail: {kristof.jannes, bert.lagaisse, wouter.joosen }@cs.kuleuven.be

Several client-side frameworks for synchronization of
semi-structured data exist. They support fine-grained and
concurrent updates on local copies of shared data and op-
erate conflict-free in online and offline situations. However,
there is no generic, fully web-based middleware solution
that can be used by interactive web applications to:

1) achieve continuous and interactive synchronization
for online clients and prompt resynchronization for
offline clients,

2) scale to tens (20-30) of online clients that con-
currently edit a document with interactive perfor-
mance,

3) tolerate hundreds of clients over time without in-
flating the data with versioning metadata.

In this paper, we present OWebSync, a generic web mid-
dleware for data synchronization in browser-based applica-
tions and interactive groupware. It supports offline usage
with fast resynchronization, as well as continuous and in-
teractive synchronization between online clients. OWebSync
provides a generic, reusable data type, based on JSON [2],
that web application developers can leverage to model their
application data. One can nest several map structures into
each other to build a complex tree-structured data model.
These data types support fine-grained and conflict-free syn-
chronization by leveraging state-based Conflict-free Repli-
cated Data Types (CRDTs). OWebSync solves the scalability
issue that comes with operation-based approaches, where
server-side metadata will grow linearly over time with the
number of clients present in the system at some point.
It reduces the required bandwidth by combining several
tactics such as Merkle-trees embedded in the tree-structured
data, virtual Merkle-tree levels, and message batching. As
such, OWebSync can achieve the interactive performance of

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 2

operation-based approaches, while maintaining the inherent
robustness of state-based approaches.

State-of-the-art data synchronization frameworks are
either operation-based, state-based or delta-state-based.
Operation-based approaches distribute the updates as op-
erations to all replicas. Operational Transformation, as used
in Google Docs [3], is a popular operation-based technique
for real-time synchronization in web applications, but it is
not resilient against message loss or out-of-order messages.
It requires a central server transforming the operations for
other clients to deal with concurrent changes. Commutative
Replicated Data Types [4], [5], as used in SwiftCloud [6], [7],
Yjs [8], [9], [10] and Automerge [11], [12], are also operation-
based. Again, updates must be propagated, as operations,
to all clients using a reliable, exactly-once, message channel.
However, no transformation is needed because concurrent
operations are commutative. State-based Convergent Repli-
cated Data Types [5] are resilient against message loss, but
have often been considered as problematic since the full
state has to be transferred between all replicas each time.
However, it is used for background synchronization be-
tween data centers, e.g. in Riak [13]. Merkle Search Trees [14]
are proposed as a solution to the high bandwidth usage. It
uses Merkle-trees [15] to replicate a basic key-value store
like in Dynamo [16]. The solution works in large systems
with low rates of updates for asynchronous background
synchronization between backend servers; it is not suited
for interactive groupware. Delta-state-based Conflict-free
Replicated Data Types [17], [18], as used in Legion [19], [20],
need less of the message channel than the operation-based
approaches. However, they use vector clocks to calculate
delta-updates, which require one entry per writing client per
object in the server-side metadata. This does not integrate
well with the dynamic nature of the web, where it is often
uncertain if a client will ever connect to a server again.

This paper is structured as follows. Section 2 provides
two motivating case studies and then provides the rationale
and more background on synchronization mechanisms such
as CRDTs. Section 3 describes the underlying data model
based on CRDTs and Merkle-trees. Section 4 presents the
deployment and runtime synchronization architecture to-
gether with two performance optimization tactics. Section
5 compares and evaluates performance in online and of-
fline situations using OWebSync and other state-of-the-art
synchronization frameworks. We discuss related work in
Section 6 and then we conclude.

2 MOTIVATION, BACKGROUND AND APPROACH

This section explains the motivation of the goal and ap-
proach of the OWebSync middleware. First, we present two
case studies of online software services for mobile employ-
ees and customers that often encounter offline settings due
to expected or unexpected network disruptions. We then
provide background information on Operational Transfor-
mation, Conflict-free Replicated Data Types and Merkle-
trees, and motivate our approach using state-based CRDTs.

2.1 Case studies

The motivation and requirements have emerged from two
case studies from our applied research projects with in-

dustry, that have also been used for the evaluation of the
middleware. The first case study is an online software
service from eWorkforce, a company that provides techni-
cians to install network devices for different telecom oper-
ators at their customers’ premises. The second company is
eDesigners, which offers a web-based design environment
for graphical templates that are applied to mass customer
communication.

2.1.1 eWorkforce

eWorkforce has two kinds of employees that use the online
software service: the help desk operators at the office and
the technicians on the road. The help desk operators accept
customer calls, plan technical intervention jobs and assign
them to a technician. The technicians can check their work
plan on a mobile device and go from customer to customer.
They want to see the details of their next job wherever they
are and must be able to indicate which materials they used
for a job. Since they are always on the road, a stable internet
connection is not always available. Moreover, they often
work in offline mode when they work in basements to install
hardware. Writing off all used materials is crucial for correct
billing and inventory afterwards.

This case study requires support for long term offline
usage, with quick synchronization when coming online,
especially for last-minute changes to the work plan of the
technicians. The help desk software must be operational at
all times, even without connection to the central database, as
customers can call for support and schedule interventions.

2.1.2 eDesigners

The company eDesigners offers a customer-facing multi-
tenant web application to create, edit and apply graphical
templates for mass communication based on the customer’s
company style. Templates can be edited by multiple users at
the same time, even when offline. When two users edit the
same document, a conflict occurs, and the versions need to
be merged. Edits that are independent of each other should
both be applied to the template, e.g. one edit changes the
color of an object, another edit changes the size. When two
users edit the same property of the same object, only one
value can be saved. This should be resolved automatically
as to not interrupt the user.

This case study requires that the application is always
available, updates must always be possible, even offline
when working on an airplane. When coming back online,
the updates should be synchronized promptly without re-
quiring the user or the application to manually resolve
conflicts. When working online, the performance should be
interactive, especially when two users are working on the
same template next to each other.

2.2 Background, principles and approach

The previous section described the overall goal of OWeb-
Sync. This section now describes our motivation for our
approach. Therefore, we first discuss the advantages and
problems of state-of-the-art techniques such as Operational
Transformation and Conflict-free Replicated Data Types
(CRDTs). We then discuss Merkle-trees and end this section
by introducing our approach of combining existing CRDTs
with Merkle-trees.

Page20of 13

Page 3 of 13

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 3

221

OT [21] is a technique that is often used to synchronize
concurrent edits on a shared document. It works by sending
the operations to the other replicas. The operations are
not necessarily commutative, which means they cannot be
applied immediately on other replicas. A concurrent edit
might conflict with another operation. Therefore, a central
server is used to transform the operations for the different
replicas so that the resulting operations maintain the origi-
nal semantics. The problem is that the transformation of the
incoming operations of other clients on their local state can
get very complex. Messages can also get lost or can arrive in
the wrong order. Hence, OT is not resilient against message
loss in offline situations [22].

Operational Transformation

2.2.2 Conflict-free Replicated Data Types

CRDTs [5], [23] are data structures designed for replica-
tion that guarantee eventual consistency without explicit
coordination with other replicas. Conflict-free means that
conflicts are resolved automatically in a systematic and
deterministic way, such that the application or user does not
have to deal with conflicts manually. There are two kinds of
CRDTs: operation-based or Commutative Replicated Data
Types (CmRDT) and state-based or Convergent Replicated
Data Types (CvRDT).

Commutative Replicated Data Types. CmRDTs [23] make
use of operations to reach consistency, just like OT. Concur-
rent operations in CmRDTs must be commutative and can
be applied in any order. This way, there is no central server
necessary to apply a transformation on the operations. As
with OT, CmRDTs need a reliable message broadcast chan-
nel so that every message reaches every replica exactly-once.
Causally ordered delivery is required in some cases.

Convergent Replicated Data Types. CvRDTs [23] are based
on the state of the data type. Updates are propagated to
other replicas by sending the whole state and merging the
two CvRDTs. For this merge operation, there is a monotonic
join semi-lattice defined. This means that there is a partial
order defined over the possible states and a least-upper-
bound operation between two states. The least-upper-bound
is the smallest state that is larger or equal to both states
according to the partial order. To merge two states, the
least-upper-bound is computed, which will be the new state.
CvRDTs require little from the message channel: messages
can get lost or arrive out-of-order without a problem since
the whole state is always sent. However, this state can get
large, and needs to be communicated every time.

Delta-state CoRDTs. §-CvRDTs [17], [24] are a variant
of state-based CRDTs with the advantage that in some
cases only part of the state (a delta) needs to be sent for
correct synchronization. When a client performs an update,
a new delta is generated which reflects the update. Each
client keeps a list of deltas and remembers which clients
have already acknowledged a delta. As soon as all clients
have acknowledged a delta, it can be discarded because the
update is now reflected in the state of all clients. If a client
was offline and has missed too many deltas, then the full
state must be sent, just like with normal state-based CRDTs.

0-CRDTs have some problems when using them in web
applications. Browser-based clients come and go with a

large churn rate and it is often unclear if a client will
come back online in the future (e.g. browser cache cleared).
Keeping extra metadata for all those clients, to be able to
synchronize only the required deltas, can result in a large
storage or memory overhead to keep track of them at the
server. One can always discard the metadata for clients that
were offline and send the full state if they do come back
online eventually. But this is of course not efficient when the
state is large and the client already had most of the updates.
A variant of J-CRDTs, called A-CRDTs [18], is proposed
as a solution to this problem. A-CRDTs are comparable to
0-CRDTs, but instead of keeping track of the clients at the
server, it includes extra metadata about concurrent versions
of all clients in the data model, as vector clocks, to calculate
the deltas dynamically. This solves the problem of keeping
track of the deltas for clients at the server, but it still needs
client identifiers and version numbers inside the vector
clocks for each object, and each client that made a change.
Another approach to optimize §-CRDTs is using join
decompositions [25], [26]. This approach does not extend
CRDTs with additional metadata that needs to be garbage
collected. Instead, it can efficiently calculate a minimal delta
to synchronize. While this improves the network usage
compared to normal §-CRDTs, it still requires clients to keep
track of their neighbors. When there is no such data avail-
able, e.g. after a network partition, it needs to fall back to a
state-based approach. However, it only requires sending the
full state in a single direction, compared to bidirectionally in
normal state-based CRDTs. A digest-driven approach is also
supported, which will send a smaller digest of the actual
state. However, for many CRDTs, such digest does not exist
and for large, nested data, this digest would still be large.

2.2.3 Merkle-trees

Merkle-trees [15] or hash-trees are used to quickly compare
two large data structures. Merkle-trees are trees where each
node contains a hash. The values of the leaf nodes are
hashed and each hash in an internal node is the hash of the
hashes of all its immediate children. Two data structures can
now be compared starting from the two top-level hashes.
If the top-level hashes match, the data structures are equal.
Otherwise, the tree can be descended using the mismatching
hashes to find the mismatching items. Sub-trees which are
already equal will have equal hashes at their top nodes, so
they do not need further verification.

2.2.4 Approach

OWebSync uses state-based CRDTs, which require little
from the message channel compared to operation-based
approaches. No state about other clients or client-based
versioning metadata needs to be stored, unlike delta-state
approaches. And even after long offline periods, the missed
updates can be computed and synchronized seamlessly. To
limit the overhead of full state exchanges between clients
and server, we adopt Merkle-trees in the data structure
to find the items that need to be synchronized efficiently.
This data structure and its building blocks are discussed in
Section 3. Together with other architectural performance tac-
tics, we can achieve prompt synchronization in interactive
groupware. This is discussed in Section 4.

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 4

3 THE OWEBSYNC DATA MODEL

This section describes the internal data model of OWebSync
that will be used for synchronization. The data model is a
CvRDT for the efficient replication of JSON data structures
and applies Merkle-trees internally to quickly find data
changes. The CvRDT consist of two types: a Last-Write-Wins
Register (LWWRegister) and an Observed-Removed Map
(ORMap) extended with a Merkle-tree. The LWWRegister is
used to store values in the leaves of the tree. The ORMap is
a recursive data structure that represents a map containing
a mapping from strings to other ORMaps or LIWWRegisters.

3.1 Last-Write-Wins Register

A LWWRegister [5] contains exactly one value (string,
number or boolean) together with a timestamp of the last
change of that value. This timestamp will be used to merge
another replica of this LIWWRegister. The value associated
with the highest timestamp is kept, while the other value is
discarded. The timestamps are provided by the clients and
we do not consider malicious clients. This conflict resolution
strategy boils down to a simple last-write-wins strategy.

3.2 Observed-Removed Map

A basic ORMap is implemented starting from an Observed-
Removed Set (ORSet) as described by Shapiro et al. [5].
Internally, the ORSet contains two sets: the observed set
and the removed set. When a new value is added to the
map, its key-value pair is added to the observed set. When
a value is removed, it is added to the removed set. All items
present in the observed set, but not in the removed set are
currently present in the map. To make sure an item can be
removed and added again later, each item is associated with
a unique ID, so it can be added again later with a different
ID. The conflict resolution of the ORMap boils down to
an add-wins resolution, i.e. a concurrent add and remove
operation will result in the item being present in the set since
each add will get a new identifier. To merge a local ORMap
with its corresponding ORMap from another replica, the
union of the respective observed and removed set is taken.
Concurrent edits to different keys can be made without a
problem. Edits to the same key will be delegated to the child
CRDT: either another ORMap or a LWWRegister.

We made two extensions to this basic ORMap to make
state-based synchronization more efficient. First, we ex-
tended this data structure with a Merkle-tree that we pattern
over the object’s logical tree-structure. This means that we
keep an extra hash for all items in the observed set. When
the child is a LWWRegister, the hash is the hash of the
value of that register. When the child is another ORMap,
the hash of it is the combined hash of the hashes of all its
children. This way, when one value in a register changes,
all the hashes of the parents will also change, so that a
change can be detected by only comparing the top-level
hash. Second, we do not store a child CRDT inside the
observed set, instead we only store the ID, key and hash of
that CRDT. The child CRDTs can be stored elsewhere using
its path as a unique key.

Fig. 1 shows the specification of the OWebSync ORMap
with our two extensions. The ORMap supports four opera-
tions: reading the value of a key, updating the value of a key,

1: state
2: O « () > Observed set with tuples of (id, key, hash)
33 R+ 0 > Removed set with ids
4: Path > The path in the JSON structure
5: procedure GET(path)
6: if 3o € O A o.key = path[0] then
7: ¢ KV.GET(Path + o.key)
8: return c.GET(path[1..])
9: else

10: return L

11: procedure SET(path, value)
122 if 3o € O A o.key = path[0] then

13: ¢ < KV.GET(Path + o.key)

14: ¢.SET(path[1..], value)

15: o.hash < c.hash

16: else

17: ¢ + NEW_ORMAP(Path + path[0])
18: ¢.SET(path[1..], value)

19: O < O U{(c.id, path[0], c.hash)}

20: procedure REMOVE(path)
21: if 3o € O A o.key = path|0] then

22: if LEN(path) = 1 then

23: O+ 0\ {o}

24: R+ RU{o.id}

25: else

26: ¢ < KV.GET(Path + o.key)

27: ¢.REMOVE(path/[1..])

28: o.hash < c.hash

29: procedure MERGE(path, remote)

30: N+ > paths that need synchronization
31: if LEN(path) = 0 then

32: R < RUremote.R

33: for all ro € remote.O Aro.id ¢ R do
34: if 3o € O A o.key = ro.key then
35: if 0.hash # ro.hash then

36: N < N U{Path + o.key}
37: else

38: N < N U{Path +ro.key}

39: else

40: if Jo € O A o.key = path|0] then

41: ¢« KV.GET(Path + o.key)

42: N + N U cJOIN(path[l..], remote)
43: o.hash + c.hash

44; else

45: ¢ < NEW_ORMAP(Path + path[0])
46: N + N U c.JOIN(path[1..], remote)
47: O < O U {(c.id, path[0], c.hash)}

48: return N

Fig. 1. Simplified implementation of an ORMap with a Merkle-tree for
synchronization. Several optimization tactics and other details are ab-
stracted. Paths are typical JSON paths separated with dots, the different
parts are accessed using array-notation here.

removing the value of a key and merging the ORMap of the
local replica with the ORMap received from another replica.
The get operation is equal to the one in a basic ORMap.
The set and remove operation are also similar, but require
updating the hash to keep the Merkle-tree up-to-date. The
merge operation is modified to make use of the Merkle-

Page 4 of 13

Page 5of 13

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 5

{
"drawingl": {
"object36": {

"fill": "#£00",
"height": 50,
"left": 50,
"top": 100,
"type": "rect",
"width": 80

}
Fig. 2. JSON data structure of the eDesigners case study.

- drawingl.object36:
id: 0a2f7bc2-129f-11e9-abl4-d663bd873d93

hash: 7319eaeb53558516daafacl19183f2ee34
observed:

- id: 23cl259a-129f-11e9-abl4-d663bd873d93
hash: 65bddlb610£629e54d05459c00523a2b
key: "top"

— 1id: Oeac2a3a-546£f-11e9-8647-d663bd873d93
hash: 67507876941285085484984080£5951e
key: "left"

removed:

- drawingl.object36.top:
id: 23¢1259a-129f-11e9-abl4-d663bd873d93
hash: 65bdd1lb610£629e54d05459c00523a2b
value: "100"
timestamp: 789778800000

Fig. 3. Internal structure of two CRDTSs that represent ocbject36 and
the property top of the JSON data structure in Fig. 2.

tree. It returns all paths that are changed according to the
Merkle-tree. In a next step, the synchronization protocol will
descend in the tree and continue the merge operation in the
next level. Only the returned paths are merged further, the
other branches of the tree do not need further processing.
By splitting up this operation per level in the tree, only the
updated registers and parent ORMaps will need to be send
over the network, improving both the bandwidth usage as
well as saving computation power as not all CRDTs need
to be merged. We explain this synchronization protocol in
more detail in Section 4. We use a key-value store to store
the child CRDTs, called K'V in the specification.

As an example, we illustrate the conceptual represen-
tation of an application data object in the eDesigners case
study, as well as the resulting underlying CRDTs in the
OWebSync data model. Fig. 2 present a JSON data structure
of a drawing with one rectangle object. Fig. 3 represents
the internal structure of two CRDTs in that JSON structure.
First, the key under which the CRDT is stored in a key-value
store is listed, then the internal value of the CRDT. The first
CRDT is an ORMap, the second a LWWRegister. For con-
ciseness, only the top and the left properties are shown
as children of object36. The application developer only
needs to know about the conceptual JSON representation,
the middleware will automatically translate this data model
and its operations to the underlying CRDTs and maintain
the Merkle-tree and internal CRDT structure.

3.3 Considerations and discussion

The data model is best suited for semi-structured data that
is produced and edited by concurrent users. Any data that
can be modeled in a tree-like structure such as JSON and

that can tolerate eventual consistency, can use OWebSync for
the synchronization. Examples are the data items in the case
studies: graphical templates, a set of tasks or used materials
for a task. This data model is less suited for applications
such as online banking which requires constraints on the
data such as: “your balance can never be less than zero”.
Text-editing is also not a great fit, because there is not much
structure in the data. If you would see text as a list of
characters, it would result in a tree with one top-level node
and one level with many child nodes: the characters. There
is no benefit in using a Merkle-tree here. OWebSync also
expects that no clients are malicious.

In the current data model, the ORMap keeps the IDs of
all removed children eternally, so-called tombstones. As a
result, the size of an ORMap can accumulate over time and
performance will degrade. With a modest usage of deletion,
this will not be a problem. Even when you remove a large
sub-tree of several levels deep, only the ID of the its root
is kept in the parent. One strategy to clean up tombstones
could be to remove those older than one month. We then
expect that a client will not be offline for more than a month
while performing concurrent edits. This can be enforced by
logging out the user after a month of no usage.

Another kind of conflict occurs when two different types
of CRDTs are assigned concurrently at the same position
in the JSON structure. In this case, the merge-operation of
the defined CRDTs cannot be used to resolve the conflict.
This is solved by posing an order on the possible CRDTs,
e.g. LWWRegister < ORMap. This means that when such a
conflict occurs, the ORMap is selected as actual value, while
the LWWRegister is discarded.

Another conflict is a concurrent remove and update of a
child CRDT. The CRDT proposed here maintains a remove-
wins semantic. This means that updates done to children are
discarded when the parent is removed concurrently.

Beside primitive values and maps, the JSON specifica-
tion also contains ordered lists. This is currently not sup-
ported by OWebSync. We focused on the initial key data
structures: last-write-wins registers and maps. Keeping a
total numbered order, as lists do, is rarely needed. Unique
IDs in a map are better suited in a distributed setting. In
the case studies, the ordering of items in a set was based
on application-specific properties such as dates, times or
other values, instead of an auto-incremented number of a
list. However, CvRDTs for ordered lists exist [5], [27] and
could be added in future work. Adding new kinds of CRDTs
to the data model is straight-forward. An existing CvRDT
can be used as is, except for an extra hash to be part of the
Merkle-tree. For a CRDT that represents a leaf value (e.g. a
Multi-Value Register [5]), the hash is simply the hash of that
value. For CRDTs that can contain other values, the hash
must combine the hashes of all the children.

4 ARCHITECTURE AND SYNCHRONIZATION PRO-
TOCOL

This section describes the deployment and execution archi-
tecture of OWebSync as well as the synchronization pro-
tocol. This middleware architecture is key to support the
data- and synchronization model described in the previous
section. We also elaborate on a set of key performance

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 6

2
2
Browser Server
Main thread Worker thread
<HTML5>{
Application
@API SYNC
<> sffOff <s> SO <s> s
Middleware {1 Worker HH-OH Server
Q Q
& componentg <L componentg
L IndexedDB K/V-store

Fig. 4. Overall architecture of the OWebSync middleware

optimization tactics to achieve continuous, prompt synchro-
nization for online interactive clients.

4.1 Overall architecture

The middleware architecture is depicted in Fig. 4 and
consists of a client and a server subsystem. The client-
tier middleware API is fully implemented in JavaScript
and runs completely in the browser, without add-ins or
plugins. The server is a light-weight process, which listens
to incoming web requests. The server is only responsible
for data synchronization, it does not run application logic.
Both client and server have a key-value store to persist
data, and they communicate using only web-based HTTP
traffic and WebSockets [28]. All communication messages
are sent and received inside the client and server subsystems
using asynchronous workers. The IDs in the ORMap are
UUID [29] and we use the MD5 [30] algorithm for hashing.
We first elaborate on the client-tier subsystem with the
public middleware API for applications, and then describe
the client-server synchronization protocol.

4.2 Client-tier middleware and API

The public programming API of the middleware is located
completely at the client-tier, and web applications are de-
veloped as client-side JavaScript applications that use the
following API:

e GET (path): returns a JavaScript object or primitive
value for a given path.

e LISTEN (path, callback):similarto GET,butev-
ery time the value changes, the callback is executed.

e SET(path, value): set or update a value at a
given path.

e« REMOVE (path): remove the value or sub-tree at the
given path.

The OWebSync middleware is loaded as a JavaScript library
in the client and the middleware is then available in the
global scope of the web page. One can then load and edit
data using typical JavaScript paths. An example from the
eDesigners case study:

let dl =
dl.object36.color =
OWebSync.set ("drawingl",

await OWebSync.get ("drawingl")
"#£00"
dl)

The object at "drawingl" is fetched from disc and
is represented as a JavaScript object in memory. If there

X

Client 1: [GET "drawingl"] Server

2: [PUSH "drawingl"]

3: [PUSH "drawingl.object36"]

4: [PUSH "drawingl.object36.color"]

5: 1]

Fig. 5. Synchronization protocol when another client made an update to
the color. A GET message only sends the path and hash value, a PUSH
message also sends the respective CRDT. E.g. for message 3, the first
CRDT in Figure 3 is sent.

would be other drawings (e.g. drawing?), they will not
be loaded. The access to "dl.object36.color" is just
a plain JavaScript object access and does not involve OWeb-
Sync. For performance reasons, it is best to always scope
to the smallest possible object from the database, in this
example that would be:

OWebSync.set ("drawingl.object36.color", "#£f00")

4.3 Synchronization protocol

The synchronization protocol between client and server
consists of three key messages that the client can send to
the server and vice versa:

e GET (path, hash): the receiver returns the CRDT
at a given path if the hash is different from its own
CRDT at the given path.

e PUSH (path, CRDT): the sender sends the CRDT
data structure at a given path and the receiver will
merge it at the given path.

e REMOVE (path, id):removes the CRDT at a given
path if the unique identifier of the value is matching
the given ID. As such, a newer value with a different
ID will not be removed.

The protocol is initiated by a client, which will traverse the
Merkle-tree of the CRDTs. The synchronization starts with
the highest CRDT in the tree. The client will send a GET
message to the server with the given path and hash value
of the CRDT. If the server concludes that the hash of the
path matches the client’s hash, the synchronization stops.
All data is consistent at that time.

If the hash does not match, the server returns a PUSH
message with the CRDT that is located at the path requested
by the client. This does not include the child CRDTs, only
the metadata (ID, key, and hash) of the immediate children.
The client must merge the new CRDT with the CRDT at
its requested path. The specification is listed in Fig. 1. The
merge operation returns a set with all changed paths. Those
paths are the paths of the conflicting CRDTs that still need
to be synchronized. The client will then PUSH the CRDTs
belonging to those paths to the server. The server then needs
to merge those CRDTs. If a child does not yet exist, an empty
child is created and a GET message is sent. The process con-
tinues by traversing the tree and exchanging PUSH and GET
messages until the leaves of the tree are reached. The CRDT

Page 6 of 13

Page 7 of 13

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 7

in this leaf is a register and can be merged immediately.
All parents of this leaf are now updated such that finally
the top-level hash of client and server match. If the top-
level hashes do not match, other updates have been done
in the meantime, and the process is repeated. Per PUSH
message that is sent, the process descends one level in the
Merkle-tree. The number of messages, and thus the length
of the synchronization protocol, is therefore limited to the
maximum depth of the Merkle-tree.

If during a merger process, a child seems to be removed
at one side, but not at the other side, a REMOVE message
is sent to the other party so that it can remove that value
and add the ID to the removed set of the correct ORMap.
Alternatively, this additional third message type of REMOVE
could be avoided if a PUSH of the parent would be sent
instead. However, the push of a parent with many children
would cause a serious overhead compared to a REMOVE
message with only a path and a ID.

Fig. 5 shows an example of the eDesigners case study
where the client changed the color of an object. If the client
had made multiple changes, e.g. he also changed the height,
the start of the synchronization protocol would be the same,
except that the height will also be included in message four.

4.4 Performance optimization tactics

The main optimization tactic to achieve prompt synchro-
nization for interactive groupware is the reduction of net-
work traffic by the Merkle-trees. However, there are ad-
ditional tactics needed to further improve synchronization
time. The protocol discussed above leads to many messages
between clients and the server. To reduce the chattiness
and overhead of the synchronization protocol between the
many clients and the server, different optimization tactics
are applied by the client and the server.

4.4.1 Virtual Merkle-tree levels

When the number of child values in an ORMap increases,
all the metadata for those children (ID, key, and hash) needs
to be sent each time during the synchronization to check
for changes. This leads to very high network usage since
it cannot make use of the Merkle-tree efficiently. To solve
this problem, we introduced extra, virtual, levels in the
Merkle-tree. Whenever an ORMap needs to be transmitted
which contains many children (i.e. hundreds), instead an
extra Merkle-tree level is sent. This extra level combines
the many children in groups of e.g. 10. This number can be
adapted to the total number of children. As a result, 10 times
fewer hashes will be sent, combined with the key-ranges the
hashes belong to. The other party can verify the hashes and
determine which ones are changed and then push the 10
children for which the combined hash did not match. This
improvement leads to a slight delay in synchronization time
since it adds one extra round-trip, but when only a small
part of the children is updated, it uses much less bandwidth
and reduces the computation time.

4.4.2 Message batching.

In the basic protocol explained above, all messages are
sent to the other party as soon as a mismatch of a hash
in the Merkle-tree is detected. This leads to lots of small

messages (GET, PUSH, and REMOVE) being sent out, and as a
consequence, many messages are coming in while still doing
the first synchronization. This results in many duplicated
messages and doing a lot of duplicated work on sub-trees
since the top-level hash will only be up-to-date when the
bottom of the tree is synchronized. To solve this problem,
all messages are grouped in a list and are sent out in batch
after a full pass of a whole level of the tree has occurred. At
the other side, the messages are processed concurrently, and
all resulting messages are again grouped in a list, and are
only sent out after the incoming batch was fully iterated.
If no further messages are resulting from the processing
of a batch, an empty list is sent to the other party to end
the synchronization. As a result, fewer messages are sent
between a client and server, and only one synchronization
round per client is occurring at the same time, resulting in
no duplicated messages and work on sub-trees.

5 PERFORMANCE EVALUATION

The performance evaluation will focus on situations where
all clients are continuously online, as well as on situations
where the network is interrupted. For online situations, we
are especially interested in the time it takes to distribute and
apply an update to all other clients that are editing the same
data. For the offline situation, we are especially interested in
the time it takes for all clients to get back in sync with each
other after the network disruption, and in the time it takes
to restore normal interactive performance.

The performance evaluation in this paper is performed
using the eDesigners case studyl, as this scenario has
the largest set of shared data and objects between users.
The eWorkforce case study has fewer shared data with
fewer concurrent updates as technicians typically work on
their own data island and the data contains fewer objects
with less frequent changes. To compare performance, we
implemented the case study 5 times on 5 representative
JavaScript technologies for web-based data synchronization:
our OWebSync platform, which uses state-based CRDTs
with Merkle-trees, Yjs [10] and Automerge [12] which use
operation-based CRDTs, and ShareDB [31] which makes use
of OT. We used Legion [19] for testing delta-state CRDTs.
Both Yjs (1259 GitHub stars) and ShareDB (2918 GitHub
stars) are widely used open source technologies available on
GitHub. Automerge is the implementation of the JSON data
type of Kleppmann and Beresford [32]. Legion is not widely
used in production but is currently the only implementation
of delta-state CRDTs in JavaScript to the best of our knowl-
edge. We did not evaluate Google Docs, which uses OT, as it
is text-based, and can not be used to synchronize the JSON-
documents used in the test. Instead, we opted for ShareDB.
We use Fabric.js [33] for the graphical interface.

5.1 Test setup

Both the clients and the server are deployed as separate
Docker containers on a set of VMs in the Azure [34] public

1. A try-out demo application on the middleware is available on
an anonymous website (http://owebsync.cloudapp.net). One can open
multiple Chrome browsers as concurrent clients. Use different chrome-
profiles for each client: e.g. your normal chrome profile and an incog-
nito window. No personally identifiable information is gathered.

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 8

cloud. A VM has 4 vCPU cores and 8 GB of RAM (Azure
Standard A4 v2) and can hold up to 3 client containers.
A client container contains a browser that loads the client-
side middleware from the server. The middleware server is
deployed on a separate VM (Azure Standard F4s v2). The
monitoring server that captures all performance data is also
deployed on a separate VM. The Linux tc tool [35] is used
to artificially increase the latency between the containers to
an average of 60 ms with 10 ms jitter, which resembles the
latency of a 4G network in the US [36].

Our evaluation contains three benchmarks?: the first two
focusing on interactive performance with different configu-
rations, and the last on storage size over a longer time.

The first benchmark represents the continuous online
scenario where clients are making updates for 10 minutes
and stay online the whole time. The second benchmark is
the offline scenario where the network connection between
the clients and the server is disrupted during the test. In
total, we executed 60 tests for those first two benchmarks: 6
tests to be executed by each of the 5 technologies, in both
a continuous online setting as well as in a disconnected
situation. These 6 tests vary in the number of clients and
data size: 8, 16, or 24 clients are performing continuous
concurrent updates on 100 or 1000 objects in a single shared
data set. One such object was shown in Fig. 2 in Section 3
and has 7 attributes. Each client edits one object, which
leads to two random writes, the x and y position, on a
shared object every second. In reality, a single update in the
user-interface can lead to several writes to the data store,
e.g. updating a gradient color would lead to 5 writes in
Fabric.js [33]. We use at most 24 clients, which are editing
the same document concurrently. In comparison, Google
Docs, which is the most popular collaborative editing sys-
tem today, supports a maximum of 100 concurrent users
according to Google itself [3]. But in practice, latency starts
to increase significantly when the number of users exceeds
10 [37]. Our performance results show the same problem
for ShareDB, which uses the same technique. In our perfor-
mance evaluation, one iteration of a test takes 10 minutes.
Before each test, the database is populated and the initial
synchronization is performed. The first minute is used to
execute a warm-up. Then we measure the performance of 9
minutes of continuous updates. To ensure the stability and
consistency of the test results, all tests are repeated 10 times.

The third and last benchmark is used to measure the
total size of the data set over a longer time (2 hours).
Every 10 minutes, 5 new client browsers will start making
changes. After those 10 minutes, the browsers are shut down
and replaced by others. After 2 hours, about 60 browsers
of clients are introduced into the system. This benchmark
simulates the eDesigners case study over the course of a
few years. Several employees and external consultants will
have worked on the template using different browsers on
their devices (desktop, laptop, tablet). In the meantime, they
might have cleared their browser cache, used an incognito
session or switched to a new device. This scenario is used to
verify how well the 5 frameworks will perform over time.

2. Tables with the detailed performance results and the raw logs and
data of all tests are available on an anonymous Azure storage account:
https:/ /owebsyncdata.blob.core.windows.net/logs/data.zip

5.2 Performance of continuous online updates

The following performance measurements quantify the sta-
tistical division of the time it takes to synchronize a single
update to all other clients in the case of a continuous
online situation. The synchronization times of the succeeded
updates are illustrated in Fig. 6.

Analysis of the results. For the test with 8 clients and
100 objects, all operation-based approaches (ShareDB, Yjs,
and Automerge) synchronize the updates faster than the
state-based approaches (Legion and OWebSync). For these
three operation-based approaches, 99% is below 0.3 seconds.
Legion needs about 1.0 second for synchronizing the 99th
percentile and OWebSync needs 1.3 seconds. The reason
for this is that Legion and OWebSync do not keep track
of which updates have been sent to which client. Hence,
each time the data is synchronized, a few extra round-
trips are required to calculate which updates are needed.
ShareDB, Yjs, and Automerge can just send the operations.
On a faster network, with less latency, both Legion and
OWebSync will be able to synchronize faster than in this test,
since the round-trip time will be less. But even with this high
latency in this benchmark, OWebSync performs within the
guidelines of 1-2 seconds for interactive performance. For
the test with 24 clients and 1000 objects, ShareDB has raised
to 7.7 seconds for the 99th percentile. The server cannot keep
up with transforming the incoming operations. Since the
operations in Yjs and Automerge are commutative and do
not need a transformation, the server does not become a
bottleneck. These tests show that state-based CRDTs, which
are currently only used for background synchronization
between servers, can also be used in interactive groupware.
This improvement is due to the use of Merkle-trees em-
bedded in the data structure, the use of virtual Merkle-tree
levels for large objects, and message batching.

Network trade-off. The trade-off for this scalable, prompt
synchronization, is that OWebSync has a rather large net-
work usage compared to the other tested technologies
(Fig. 7). Only Automerge requires more bandwidth because
it stores the whole history and uses long text-based UUIDs
as client identifiers, compared to just integers in Legion.
The usage of Merkle-trees reduced the network usage of
OWebSync with about a factor 8 in the worst case (1000
objects under a single node in the tree), compared to nor-
mal state-based CRDTs. Introducing extra, virtual, levels in
the Merkle-tree for nodes with many children lowered the
bandwidth with another factor 3. Even in the test with 24
clients and 1000 objects, the used bandwidth is only 360
kbit/s per client. This is much less than the available band-
width, which is on average 27 Mbit/s on a mobile network
in the US [38]. The server consumes about 8.7 Mbit/s, which
is acceptable for a typical data center. The data structure
has an important effect on the network usage. One might
create a tree-structure with few nodes which have many
children. This will make the Merkle-tree less useful since
the metadata of all the children needs to be exchanged to
be able to determine which children are updated. This can
be seen in Fig. 7 by comparing the network usage of the
tests with 100 objects to the tests with 1000 objects. The
other possibility is that there are fewer children per node,
but with an increased depth of the tree. This positively

Page 8 0of 13

Page9of 13

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 9

Synchronization time
10 s 8 clients]
5 _: .. E

16 clients E

24 clients

H . H B H : 3&
@] H @ H % H % '
1= = 1= : 1= . .
== X 2 5 £F E
' 100 1000 100 1000 100 1000
Objects Objects Objects
ShareDB & Yjs Automerge &% Legion Hl OWebSync

Fig. 6. Aggregated boxplots containing the times to achieve full synchronization to all clients in the online scenario. Each boxplot contains all 10
iterations for each of the 30 tests in the fully online situation. To compare technologies that have results of the same order of magnitude, as well as

results in different orders of magnitude, we opted for a logarithmic Y-axis.

Network usage

500 kbit/sq 8 clients
400
300
200
100

16 clients 24 clients

<

100

5

1000
Objects

100 100 100

Objects
ShareDB & Yjs

1000
Objects

Automerge #F Legion H OWebSync

Fig. 7. Network usage per client for each test in the online scenario.

affects the network usage, as less metadata will need to be
exchanged. However, synchronizing the whole tree will take
more round-trips as there are more levels in the tree.

Interpretation and discussion. For interactive web applica-
tions and groupware, usability guidelines [1], [39] state that
remote response times should be 1 to 2 seconds on average.
3 to 5 seconds is the absolute maximum before users are
annoyed. The user is often leaving the web application after
10 seconds of waiting time. We start from these numbers
to assess the update propagation time between users in a
collaborative interactive online application with continuous
updates. We are interested in the time for a user to receive
an update from another online user. These numbers should
be achieved not only for the average user (the mean syn-
chronization time) but also for the 99th percentile (i.e. most
of the users [16]). The 99th percentile for the synchronization
time of the OWebSync test with 24 clients and 1000 objects
is below 1.5 seconds. ShareDB operates with sub-second
synchronization times when sharing 100 objects between
8 writers. But when the number of objects and writers
increases, the synchronization time raises to 7.7 seconds for
the 99th percentile. This is in line with the observations of
Dang et al. [37] for Google Docs, which also uses OT. The
other technologies stay well below 5 seconds in the online
scenario and can be called interactive.

5.3 Performance in disconnected scenarios

We now present the performance analysis when the network
between the clients and the server is disrupted. In these

tests, we have an analogous test setup. However, during the
10-minute execution, we start dropping all messages after
3 minutes for 1 minute (shown at 2 minutes in the graphs
as the first minute is used as a warm-up). This 1-minute
network disruption will lead to many conflicting operations,
which will automatically be resolved by the middleware.
During the disruption, there will be 1440 offline updates
in the largest experiment with 24 clients. A longer offline
period will not change much for OWebSync since only the
state is kept and the same client moving the same object
twice will result in the same amount of state to be sent.
Operation-based approaches will take longer when the time
increases since they have to send all operations anyway.

We evaluate the time that is needed to achieve full
bidirectional synchronization of all concurrent updates on
all clients during the network disruption. We also evaluate
the time that is needed to restore normal interactive perfor-
mance in the online setting after the disruption.

Analysis of the results. The boxplots of these tests, shown
in Fig. 8, show that OWebSync can synchronize all missed
updates faster than ShareDB, Yjs, Automerge, and Legion.
Note that at the median of the boxplots, only 50% of
the missed updates are synchronized. Only at the upper
whisker, all of the missed updates are fully synchronized.
Then, each user is fully up-to-date with everything that
was updated during the network disruption. In the large
scale scenario with 24 clients and 1000 updates, the time to
synchronize all missed updates in case of network failure
is 3.5 seconds for the 99th percentile for OWebSync, which
is acceptable for interactive web applications. The other
technologies need more than 5 seconds to only synchronize
half of the missed updates, meaning that users will become
annoyed. The operation-based approaches need several tens
of seconds to synchronize all of the missed updates because
they must replay all missed operations on the clients that
were offline. This is due to their operation-based nature.
OWebSync only needs to merge the new state, which it does
in the same way as if the failure never happened. Legion
could keep up with OWebSync in the online scenario, but
now we see that resynchronization after network disrup-
tions starts to take longer when the scale of the test or the

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 10
Resynchronization time
100 s 3 8 clients 3 16 clients 3 24 clients
104 —]
S N O O WO W W B 8. 181 TlH
E | 5
0.1 T T T T T T
100 1000 100 1000 100 1000
Objects Objects Objects
ShareDB B# Yjs Automerge %% Legion Bl OWebSync

Fig. 8. Boxplots of the time it takes for an update during the failure scenario to be received by all clients. The time before a client notices the network
connection is reestablished is not taken into account. Note that the median here means that only 50% of all missed updates are synchronized to all
clients. Only at the upper whisker, most of the missed updates are synchronized.

Synchronization time

30s
='. sl
20 b
10 oty
O M

o
—_
N

3 4 5 6 7 8 9min
Timeline of the test

ShareDB =--'Yjs == Automerge —=Legion — OWebSync

Fig. 9. Mean time to synchronize updates in case of a network disruption
between minute 2 and 3 for the test with 24 clients, 1000 objects.

size of the data set increases.

Timeline analysis of the tests. The timelines in Fig. 9 show
the resynchronization times on the y-axis, without the of-
fline time during the network disruption, for each update
done at a given moment during the test timeline. This means
that for an update done 20 seconds before the end of the
disruption, and which got synchronized to all other clients
22 seconds later, the resynchronization time is 2 seconds.

In the test with 24 clients and 1000 objects, OWebSync
quickly returns to the same performance as before the
network disruption. Legion needs more time to synchronize
the missed updates, but also quickly returns to the same
performance. The operation-based approaches take much
longer to synchronize missed updates and take tens of
seconds to return to the original performance. ShareDB and
Automerge need more than half a minute to return to the
same interactive performance as before. This means that in
a setting with frequent disconnections, the user will not
be able to regain interactive performance. When coming
back online, those technologies cannot achieve prompt and
interactive synchronization immediately.

5.4 Total size of the data model

All other technologies used in the evaluation use some form
of client identifiers and version numbers to keep track of
changes (e.g. vector clocks in Legion). This means that the
size of the data set will grow over time, especially in highly

Data size
7.5 MB

—
POM———

O r T 1
0 1 2hours

Timeline of the test
Automerge —=Legion == OWebSync

ShareDB ==-'Yjs

Fig. 10. Evolution of the total data size on the server.

dynamic settings like the web. Fig. 10 shows the total data
size on the server over time while several users are joining
and leaving. The size of the data set on the server remains
constant over time when using OWebSync. Other techniques
grow with the number of clients and operations. In the
dynamic setting of the web, keeping track of all clients
with version vectors and client identifiers will eventually
inflate and pollute the metadata. Users can clear the browser
cache, browse incognito or visit the web application on
multiple devices including someone else’s device for one
time. By storing those client identifiers in the data model
on the server, the performance will decrease over time.
Yjs is an exception and stops growing fast in size after a
few minutes. This is because Yjs will garbage collect old
operations after 100 seconds [10]. This operation is not safe
and clients that were offline for a longer time might end up
in an inconsistent state or lose data.

The first two benchmarks are performed on a clean data
set, meaning that the size of the data on the server is still
small. If we would start the tests after e.g. 5 hours of warm-
up, the results for the other technologies would be worse.
We evaluated a worst-case scenario for OWebSync, with
clean data sets for the other frameworks.

5.5 Summary

Our evaluation shows that the operation-based approaches
work well in continuous online situations with a limited
number of users. Operational Transformation cannot be

Page 10 of 13

Page 11 of 13

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 11

TABLE 1
Synchronization times in seconds for 24 clients and 1000 objects.

online offline
50% 99% 50% 99%
ShareDB 445 769 1267 25.10
Yjs 014 017 2021 109.15
Automerge 0.14 020 11.59 18.90
Legion 0.64 1.03 7.61 8.56
OWebSync 134 149 2.87 3.53

used with many clients as the server eventually becomes
a bottleneck. Operation-based approaches can synchronize
updates faster than state-based approaches like Legion
and OWebSync. However, when network disruptions occur,
these technologies cannot achieve acceptable performance
and need tens of seconds to achieve synchronization. Delta-
state CRDTs, as used in Legion, can recover faster from net-
work disruptions than operation-based approaches, but still
need more than 8 seconds to synchronize missed updates,
which cannot be called interactive anymore. Moreover, the
size of the data set will increase with both the number of
updates and the number of clients. OWebSync can achieve
much better performance in the order of seconds, which is
still acceptable for interactive groupware. In a setting with
frequent offline situations, e.g. for mobile employees, OWeb-
Sync is the most appropriate technology and outperforms
all other frameworks. Over time, OWebSync can continue
to deliver the same interactive performance, as no client
identifiers or version vectors are stored. Table 1 summarizes
the results in seconds of the large scale test with 24 clients
and 1000 objects for the average user (50th percentile) and
most of the users (99th percentile) for both settings.

6 RELATED WORK

The related work consists of three types of work: 1) con-
cepts and techniques such as CRDTs and OT, 2) NoSQL
data systems such as Dynamo and Cassandra, as well as
synchronization frameworks between data centers and 3)
synchronization frameworks for replication to the client.
Concepts and technigues. The concepts and techniques like
OT and CRDTs were discussed in Section 2. Other text-based
versioning systems such as Git [40] are not made to manage
data structures and do not always guarantee valid data
structures after synchronization. Code, XML or JSON can
end up malformed and often require user-level resolution.
We now discuss some other extensions to CRDTs.
Conflict-free Partially Replicated Data Types [41] allow to
replicate only part of a CRDT. This helps with bandwidth
and memory consumption, as well as security and pri-
vacy [42]. OWebSync allows replicating any arbitrary sub-
tree of the whole CRDT tree. Hybrid approaches combining
operation-based and state-based CRDTs are also possible
as demonstrated by Bendy [43]. For data that can tol-
erate staleness, one can make use of state-based CRDTs,
while for data with interactive performance requirements,
operation-based CRDTs can be used. This dynamic decision
is only made between the servers, and not on the clients.
For clients, only operation-based CRDTs are available. A
garbage collection technique can be used to reduce the

memory usage of operation-based CRDTs by defining a join-
protocol for dynamic environments [44]. But this only treats
transient network disruptions where clients will come back
online eventually, which is not necessarily the case for web
clients. Strong Eventually Consistent Replicated Objects
(SECROs) [45] are similar to operation-based CRDTs, but
do not impose restrictions on commutativity of operations.
However, by doing so, they need a global total order and
cannot tolerate network disruptions.

Distributed data systems and NoSQL systems. Based on the
Dynamo paper [16], many other open-source NoSQL sys-
tems have been developed for structured or semi-structured
data, focusing on eventual consistency within or between
data centers. Dynamo uses multi-value registers to main-
tain multiple versions of the data and expects application-
level conflict resolution. Cassandra [46], [47] supports fine-
grained versioning of cells in a wide-column store. It uses
wall-clock timestamps for each row-column cell and adopts
a last-write-wins strategy to merge two cells. CouchDB [48]
and MongoDB [49] focus on semi-structured document
storage, typically in a JSON format. CouchDB offers only
coarse-grained versioning per document and stores multiple
versions of the document. Applications need to resolve
version conflicts manually. It also does not support fine-
grained conflict detection within two documents.

Several commercial database systems allow to use
CRDTs as the underlying data model: e.g. Riak [13],
Akka [50] and Redis [51]. Besides those commercial prod-
ucts, several research projects have emerged. Merkle Search
Trees (MSF) [14] implement a key-value store like Dynamo
using a state-based CRDT and a Merkle-tree. It builds
the Merkle-tree on top of the flat data structure, while
OWebSync will make use of the tree-like structure of the
data to build the Merkle-tree. MSF is targeted to asyn-
chronous background synchronization between backend
servers, and not for interactive groupware with replication
to the clients. Antidote [52] is a research project to develop
a geo-replicated database over world-wide data centers.
It adopts operation-based commutative CRDTs for highly-
available transactions and supports partial replication but
assumes continuous online connections as the default oper-
ational situation for clients. SMAC [53] uses an operation-
based CRDT storage system for state management tasks
for distributed container deployments. DottedDB [54] uses
node-wide dot-based clocks to find changes that need to be
replicated, without the need for explicit tombstones. It does
not support replication to the clients, or offline edits.

Client-tier frameworks for synchronization. Many client-
side frameworks have appeared to enable synchronization
between native clients. Cimbiosys [55] is an application
platform that supports content-based partial replication and
synchronization with arbitrary peers. While it shares some
of the goals of OWebSync, it is best suited to synchronize
collections of media data (e.g. pictures, movies) and not
for JSON documents with fine-grained conflict resolution.
SwiftCloud [6], [7], [56] is a distributed object database with
fast reads and writes using a causally-consistent client-side
local cache and operation-based CRDTs. Metadata used for
causality in the form of vector clocks are assigned by the
data centers. Hence, the size of the metadata is bound by the
number of data centers, and not by the number of updates

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 12

or the number of clients. The cache is limited in size and
the data is only partially available, limiting what data can
be read and updated during offline operation. Because it
uses operation-based CRDTs, it needs a reliable exactly-once
message channel, which is implemented by using a log.

Besides the frameworks for native clients, there are
several JavaScript frameworks made for synchronization
between distributed web clients. Legion [19], [20] is a
framework for extending web applications with peer-to-
peer interactions. It also supports client-server usage and
uses delta-state-based CRDTs for the synchronization. Au-
tomerge [11], [12] is a JavaScript library for data synchro-
nization adopting the operation-based JSON data type of
Kleppman [32]. It uses vector clocks which grow in size
with the number of clients. PouchDB [57] is a client-side
JavaScript library that can replicate data from and to a
CouchDB server. Local data copies are stored in the browser
for offline usage. PouchDB only supports conflict detection
and resolution at the coarse-grained level of a whole docu-
ment. ShareDB [31] is a client-server framework to synchro-
nize JSON documents and adopts OT as synchronization
technique between the different local copies. ShareDB can
thus not be used in extended offline situations. In case of
short network disruptions, it can store the operations on the
data in memory and resend them when the connection is
restored. The offline operations are lost when the browser
session is closed. Yjs [8], [9], [10] is a JavaScript frame-
work for synchronizing structured data and supports maps,
arrays, XML and text documents. All data types also use
operation-based CRDTs for synchronization. Swarm.js [58]
is a JavaScript client library for the Swarm database, based
on operation-based CRDTs with a partially ordered log
for synchronization after offline situations. Swarm.js also
focuses on peer-to-peer architectures like chat applica-
tions and decentralized CDNs, while OWebSync focuses on
client-server line-of-business applications. In contrast with
OWebSync, none of these JavaScript frameworks support all
of the following: fine-grained conflict resolution, interactive
updates when online and fast resynchronization after being
offline, as well as being scalable to tens of concurrently
online clients and hundreds of writers over time.

7 CONCLUSION

This paper presented a web middleware that supports seam-
less synchronization of both online and offline clients that
are concurrently editing a shared data set. Our OWebSync
middleware implements a generic data model, based on
JSON, that combines state-based CRDTs with Merkle-trees.
This allows to quickly find differences in the data set and
synchronize them to other clients. Apart from the regular
CRDT structure and the hashes of the Merkle-tree, no other
metadata needs to be stored. Existing approaches use client
identifiers and version numbers, or even the full history, to
track updates, which will pollute the metadata and decrease
performance over time.

The comparative evaluation shows that the operation-
based approaches cannot achieve acceptable performance
in case of network disruptions and need tens of seconds to
achieve resynchronization. Current state-based approaches
using delta-state-based CRDTs are faster to recover than

the operation-based ones, but cannot achieve prompt resyn-
chronization of missed updates. The state-based approach
with Merkle-trees of OWebSync can achieve better perfor-
mance in the order of seconds for both online updates and
missed offline updates, making it suitable for interactive
web applications and groupware.

REFERENCES

[1] J. Nielsen, Usability Engineering. Nielsen Norman Group,
1993. [Online]. Available: https://www.nngroup.com/books/
usability-engineering /

[2] T. Bray, “The javascript object notation (json) data interchange
format,” Internet Requests for Comments, IETF, RFC 7158, 2014.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc7158.txt

[8] “Google docs,” https://support.google.com/docs/answer/
2494822, 2018.

[4] N. Preguica, J. M. Marques, M. Shapiro, and M. Letia, “A com-
mutative replicated data type for cooperative editing,” in 2009
29th IEEE International Conference on Distributed Computing Systems,
June 2009, pp. 395-403.

[5] M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski,
“A comprehensive study of convergent and commutative
replicated data types,” Inria — Centre Paris-Rocquencourt ;
INRIA, Research Report RR-7506, Jan. 2011. [Online]. Available:
https:/ /hal.inria.fr/inria-00555588

[6] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. Preguica, “Swiftcloud: Fault-tolerant geo-
replication integrated all the way to the client machine,”
INRIA, Research Report RR-8347, Oct. 2013. [Online]. Available:
https:/ /hal.inria.fr /hal-00870225

[7] N.Preguica, M. Zawirski, A. Bieniusa, S. Duarte, V. Balegas, C. Ba-
quero, and M. Shapiro, “Swiftcloud: Fault-tolerant geo-replication
integrated all the way to the client machine,” in 2014 IEEE 33rd
International Symposium on Reliable Distributed Systems Workshops.
IEEE, 2014, pp. 30-33.

[8] P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma, “Yjs: A
framework for near real-time p2p shared editing on arbitrary data
types,” in Engineering the Web in the Big Data Era. Cham: Springer
International Publishing, 2015, pp. 675-678.

[9] ——, “Near real-time peer-to-peer shared editing on extensible
data types,” in Proceedings of the 19th International Conference on
Supporting Group Work, ser. GROUP "16. New York, NY, USA:
ACM, 2016, pp. 39-49.

[10] “Yjs,” https:/ /github.com/y-js/yjs, 2014.

[11] M. Kleppman and A. R. Beresford. (2018) Automerge: Real-time
data sync between edge devices. [Online]. Available: http:
/ /martin.kleppmann.com/papers/automerge-mobiuk18.pdf

[12] “Automerge,” https:/ /github.com/automerge/automerge, 2017.

[13] “Riak,” http://docs.basho.com/riak/kv, 2010.

[14] A. Auvolat and F. Taiani, “Merkle Search Trees: Efficient
State-Based CRDTs in Open Networks,” in SRDS 2019
- 38th IEEE International Symposium on Reliable Distributed
Systems. Lyon, France: IEEE, Oct. 2019. [Online]. Available:
https:/ /hal.inria.fr /hal-02303490

[15] R. Merkle, “Method of providing digital signatures,” 1982, uS
patent 4309569. The Board Of Trustees Of The Leland Stanford
Junior University.

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: amazon’s highly available key-value store,” in ACM
SIGOPS operating systems review, vol. 41(6). New York, NY, USA:
ACM, 2007, pp. 205-220.

[17] P. S. Almeida, A. Shoker, and C. Baquero, “Efficient state-based
crdts by delta-mutation,” in Networked Systems. Cham: Springer
International Publishing, 2015, pp. 62-76.

[18] A. van der Linde, J. a. Leitdo, and N. Preguica, “A-crdts: Making
A-crdts delta-based,” in Proceedings of the 2Nd Workshop on the
Principles and Practice of Consistency for Distributed Data, ser. PaPoC
"16. New York, NY, USA: ACM, 2016, pp. 12:1-12:4.

[19] A. van der Linde, P. Fouto, J. a. Leitdo, N. Preguica, S. Castifieira,
and A. Bieniusa, “Legion: Enriching internet services with peer-to-
peer interactions,” in Proceedings of the 26th International Conference
on World Wide Web, ser. WWW “17. Republic and Canton of
Geneva, Switzerland: International World Wide Web Conferences
Steering Committee, 2017, pp. 283-292.

Page 12 of 13

Page 13 of 13

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR

[20]
[21]

[22]

[23]

[24]

[25

—_

[26

=

[27

—

[28]

[29

—

[30]

[31
[32

—_—

[33
[34
135

[JA R

[36

—_

[37]

[38

=

[39

—

[40
[41

[A——t

[42

—

[43

—_

[44]

[45]

Transactions on Parallel and Distributed Systems

“Legion,” https:/ /github.com/albertlinde/Legion, 2016.

C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware
systems,” SIGMOD Rec., vol. 18, no. 2, pp. 399407, Jun. 1989.

S. Kumawat and A. Khunteta, “A survey on operational transfor-
mation algorithms: Challenges, issues and achievements,” Interna-
tional Journal of Computer Applications, vol. 3, no. 12, pp. 30-38, Jul.
2010.

M. Shapiro, N. Perguica, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in SSS 2011 - 13th International Sym-
posium Stabilization, Safety, and Security of Distributed Systems, ser.
Lecture Notes in Computer Science, X. Défago, F. Petit, and
V. Villain, Eds., vol. 6976. Berlin, Heidelberg: Springer Berlin
Heidelberg, Oct. 2011, pp. 386—400.

P. S. Almeida, A. Shoker, and C. Baquero, “Delta state replicated
data types,” Journal of Parallel and Distributed Computing, vol. 111,
no. Supplement C, pp. 162 — 173, 2018.

V. Enes, C. Baquero, P. S. Almeida, and A. Shoker, “Join decompo-
sitions for efficient synchronization of crdts after a network parti-
tion: Work in progress report,” in First Workshop on Programming
Models and Languages for Distributed Computing, ser. PMLDC ’16.
New York, NY, USA: ACM, 2016, pp. 6:1-6:3.

V. Enes, P. S. Almeida, C. Baquero, and]. Leitdo, “Efficient syn-
chronization of state-based crdts,” in 2019 IEEE 35th International
Conference on Data Engineering (ICDE), April 2019, pp. 148-159.
H.-G. Roh, M. Jeon,].-S. Kim, and J. Lee, “Replicated abstract data
types: Building blocks for collaborative applications,” Journal of
Parallel and Distributed Computing, vol. 71, no. 3, pp. 354-368, 2011.
I. Hickson, “The websocket api, w3c candidate recommendation,”
Tech. Rep., 2012. [Online]. Available: https:/ /www.w3.org/TR/
2012 /CR-websockets-20120920/

P. Leach, M. Mealling, and R. Salz, “A universally unique identifier
(uuid) urn namespace,” Internet Requests for Comments, REC
4122, 2005. [Online]. Available: https://www.rfc-editor.org/rfc/
rfc4122.txt

R. Rivest, “The md5 message-digest algorithm,” Internet
Requests for Comments, RFC 1321, 1992. [Online]. Available:
https:/ /www.rfc-editor.org/rfc/rfc1321.txt

“Sharedb,” https:/ /github.com/share/sharedb, 2013.

M. Kleppmann and A. R. Beresford, “A conflict-free replicated json
datatype,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 10, pp. 2733-2746, 2017.

“Fabric.js,” https://github.com/fabricjs/fabric.js, 2011.

“Azure,” https:/ /azure.microsoft.com, 2019.

W. Almesberger, “Linux network traffic control — implementation
overview,” 1999,

“opensignal.com,” https://www.opensignal.com/reports/2019/
01/usa/mobile-network-experience, 2019.

Q.-V. Dang and C.-L. Ignat, “Performance of real-time collabora-
tive editors at large scale: User perspective,” in Internet of People
Workshop, 2016 IFIP Networking Conference, ser. Proceedings of 2016
IFIP Networking Conference, Networking 2016 and Workshops.
Vienna, Austria: IFIP, May 2016, pp. 548-553.

“Speedtest.net,” http:/ /www.speedtest.net/reports/
united-states /2018 /Mobile/, 2018.

J. Nielsen. (2010) Website response times. [Online]. Available:
https://www.nngroup.com/ articles /website-response-times /
“Git,” https:/ / git-scm.com/, 2005.

I. Briquemont, M. Bravo, Z. Li, and P. Van Roy, “Conflict-free
partially replicated data types,” in 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2015, pp. 282-289.

S. A. Kollmann, M. Kleppmann, and A. R. Beresford, “Snapdoc:
Authenticated snapshots with history privacy in peer-to-peer col-
laborative editing,” Proceedings on Privacy Enhancing Technologies,
vol. 2019, no. 3, pp. 210 — 232, 2019.

C. Bartolomeu, M. Bravo, and L. Rodrigues, “Dynamic adaptation
of geo-replicated crdts,” in Proceedings of the 31st Annual ACM
Symposium on Applied Computing, ser. SAC '16. New York, NY,
USA: ACM, 2016, pp. 514-521.

J. Bauwens and E. Gonzalez Boix, “Memory efficient crdts in
dynamic environments,” in Proceedings of the 11th ACM SIGPLAN
International Workshop on Virtual Machines and Intermediate Lan-
guages, ser. VMIL 2019. New York, NY, USA: ACM, 2019, pp.
48-57.

K. De Porre, F. Myter, C. De Troyer, C. Scholliers, W. De Meuter,
and E. Gonzalez Boix, “Putting order in strong eventual consis-

[56]

[57]
[58]

P

13

tency,” in Distributed Applications and Interoperable Systems. Cham:
Springer International Publishing, 2019, pp. 36-56.

“Apache cassandra,” https://cassandra.apache.org, 2009.

A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 3540, 2010.

“Couchdb,” https:/ /couchdb.apache.org, 2005.

“Mongodb,” https:/ /www.mongodb.com/, 2009.

“Akka,” https://doc.akka.io/docs/akka/current/
distributed-data.html, 2018.

C. Biyikoglu. (2017) Under the hood: Redis crdts (conflict-free
replicated data types).

“Antidote,” http:/ /syncfree.github.io/antidote, 2014.

J. Eberhardt, D. Ernst, and D. Bermbach, “Smac: State management
for geo-distributed containers,” Technische Universitaet Berlin,
Tech. Rep., 2016.

R. J. T. Gongalves, P. S. Almeida, C. Baquero, and V. Fonte,
“Dotteddb: Anti-entropy without merkle trees, deletes without
tombstones,” in 2017 IEEE 36th Symposium on Reliable Distributed
Systems (SRDS). 1EEE, 2017, pp. 194-203.

V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, M. Walraed-
Sullivan, T. Wobber, C. C. Marshall, and A. Vahdat, “Cimbiosys:
A platform for content-based partial replication,” in Proceedings
of the 6th USENIX symposium on Networked systems design and
implementation, 2009, pp. 261-276.

M. Zawirski, N. Preguica, S. Duarte, A. Bieniusa, V. Balegas, and
M. Shapiro, “Write fast, read in the past: Causal consistency for
client-side applications,” in Proceedings of the 16th Annual Middle-
ware Conference, ser. Middleware 15. New York, NY, USA: ACM,
2015, pp. 75-87.

“Pouchdb,” https:/ / pouchdb.com, 2013.

“Swarm.js,” https://github.com/gritzko/swarm, 2013.

Kristof Jannes is a Ph.D. candidate in the De-
partment of Computer Science at KU Leuven in
Belgium, and a member of the research group
imec-DistriNet. His research activities are under
the supervision of Prof. Dr. Wouter Joosen and
Dr. Bert Lagaisse. He received his Master’s de-
gree in computer science from the KU Leuven
in 2018. His main research interests are in the
area of data synchronization, consensus and
decentralization.

Bert Lagaisse is a senior industrial research
manager at the imec-DistriNet research group
in which he manages a portfolio of applied
research projects on cloud technologies, dis-
tributed data management and security middle-
ware in close collaboration with industrial part-
ners. He has a strong interest in distributed sys-
tems, in enterprise middleware, cloud platforms
and security services. He obtained his MSc in
computer science at KU Leuven in 2003 and
finished his Ph.D. in the same domain in 2009.

Wouter Joosen is full professor at the Depart-
ment of Computer Science of the KU Leuven in
Belgium, where he teaches courses on software
architecture and component-based software en-
gineering, distributed systems and the engineer-
ing of secure service platforms. His research
interests are in aspect-oriented software devel-
opment, focusing on software architecture and
middleware, and in security aspects of software,
including security in component frameworks and
security architectures.

