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Abstract
Many enterprise software services are adopting a fully web-
based architecture for both internal line-of-business applica-
tions and for online customer-facing applications. Although
wireless connections are becoming more ubiquitous and faster,
mobile employees and customers are not always connected.
Nevertheless, continuous operation of the software services
is expected.

This paper presents OWebSync: a web-based application
middleware for the continuous synchronization of online web
clients and web clients that have been offline for a longer
period of time. OWebSync implements a fine-grained data
synchronization model and leverages Merkle-trees and conver-
gent replicated data types to achieve the required performance.
both for online interactive clients, and for resynchronizing
clients that have been offline.

In comparison with operation-based, generic middleware
solutions, that are based on operational transformation or
operation-based replicated data types, OWebSync scales bet-
ter to tens of concurrent editors on a single document, and
is also especially better in operating in and recovering from
offline situations. Compared to other state-based approaches,
OWebSync can achieve acceptable interactive performance
with limited network overhead at a higher scale. This has been
validated and evaluated in two industrial case studies.

1 Introduction

Web applications are the default architecture for many online
software services, both for internal line-of-business applica-
tions such as CRM, HR, and billing, as well as for customer-
facing software service delivery. Native fat clients are being
abandoned in favor of browser-based applications. Browser-
based service delivery fully abstracts the heterogeneity of the
clients, and solves the deployment and maintenance problems
that come with native applications. Nevertheless, native appli-
cations are still being used when rich and highly interactive
GUIs are needed, or when applications need to function off-
line for a longer time. The former reason is disappearing as

HTML5 and JavaScript are becoming more powerful. The
latter reason should be disappearing too with the arrival of
WiFi, 4G and 5G ubiquitous wireless networks. However, in
reality connectivity is often missing for several minutes to
several hours. Mobile employees can be working in cellars or
tunnels, and customers sometimes want to use your services
while in an airplane.

Many native application-specific solutions and browser-
plugins exist to tackle this problem in an ad-hoc solution. For
example, many Google web apps can be used in offline mode.
However, there is no generic, fully web-based middleware
solution that can be used by web applications to:

1. support fine-grained and concurrent updates by dis-
tributed web clients on local copies of shared data,

2. operate conflict-free in online and offline situations,
3. achieve continuous synchronization for online clients

and prompt resynchronization for offline clients,
4. scale to tens (20-30) of online clients that concurrently

edit a single shared document with interactive perfor-
mance timings.

In his book on usability engineering [13], Nielsen states
that remote interactions should take only one to two seconds
to keep the user experience seamless. This is our basis for
prompt synchronization with interactive performance. 10 sec-
onds is the absolute maximum before users are leaving the
web application. Many existing middlewares and frameworks
exist to achieve this in the online setting. However, recover-
ing from a failure often takes several tens of seconds or the
applications need to implement complex conflict-resolution
strategies themselves.

Many distributed NoSQL data systems, e.g. Amazon Dy-
namo [4], adopt synchronization based on Vector Clocks. This
often leads to conflicts that need application-level resolving.
Text-based versioning systems such as Git are not made to
manage data structures and do not always guarantee valid
data structures after synchronization. Code, XML or JSON
documents can end up malformed and often require user-level
resolution. Operational Transformation [20] is used for real-
time synchronization in interactive web applications (e.g. in
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Google Docs [25]) but is not resilient against message loss
in case of long-time offline situations [9]. Operation-based
Conflict-free Replicated Data Types [19] (CRDTs), as used
in SMAC [5] and the JSON datatype of Kleppman [8], are
also operation-based, but don’t apply transformations to the
operations. The operations are commutative and can arrive
and be applied in a different order. However, this technique
also requires a reliable message channel with exactly-once
delivery. State-based (CRDTs) [19] are resilient against mes-
sage loss, but have often been considered as problematic with
regard to the amount of data that has to be transferred be-
tween all distributed entities, and therefore, are considered
less suited for interactive, collaborative applications. State-
based CRDTs have been used in Riak [29] for example, to
achieve background, asynchronous synchronization between
back-end data centers internally. Delta-state CRDTs [1] are an
optimization of state-based CRDTs that reduces the network
usage by only sending deltas based on the current version
of the data at the client. However, this approach is slow to
recover from long disconnections because it needs to fall back
to the pure state-based approach. This approach also needs to
keep track of different client versions in the metadata, which
does not integrate well with a web application architecture.

In this paper we present OWebSync1, a generic web middle-
ware for browser-based applications, which supports concur-
rent updates on local copies of shared data between distributed
web clients, and which supports continuous, prompt and fine-
grained synchronization between online clients. The middle-
ware supports prompt and seamless resynchronization when
clients were offline for a longer time, e.g. in case of network
failures. OWebSync leverages state-based CRDTs to support
synchronization between clients and server. Merkle-trees [11]
are used to enable seamless and prompt synchronization of
state-based CRDTs and limit the amount of data that has to
be transferred. It also doesn’t require to store metadata about
the different client versions - not in the data model, and not
at the server. More specifically, OWebSync provides generic,
reusable JSON [2] based data types that web applications
can leverage upon to model their application data. These data
types support fine-grained and conflict free synchronization
of all items in the JSON documents.

Our comparative evaluation shows that all clients receive
updates from other clients within the timespan of seconds,
even when tens of clients are editing hundreds of shared
objects in a single document. This makes it suitable for on-
line, interactive and collaborative applications. Compared to
operation-based middleware [30, 33], OWebSync scales bet-
ter to tens of concurrent clients on a single document and is
especially better in operating in and recovering from offline
situations, even with silent network failure.

1A try-out demo application on the middleware is available on an anony-
mous website (http://owebsync.cloudapp.net). One can open multiple
Chrome browsers as concurrent clients. No personal identifiable information
is gathered. No cookies are used.

This paper is structured as follows. Section 2 provides
two motivating case studies and then provides the rationale
and more background on synchronization mechanisms such
as CRDTs. Section 3 describes the generic, reusable JSON-
based data types of OWebSync. Section 4 presents the de-
ployment and runtime architecture. Section 5 compares and
evaluates performance in online and offline situations. We
discuss related work in Section 6 and then we conclude.

2 Motivation, Background and Approach

This section further explains the motivation of both the goal
and approach of the OWebSync middleware. First we present
two industrial case studies of online software services for both
mobile employees and customers that often encounter long
term offline situations. We then provide background informa-
tion on Operational Transformation, Conflict-free Replicated
Data Types and Merkle-trees, and motivate our approach of
state-based CRDTs with Merkle-trees.

Case studies. We started from two industrial case studies
from our applied research projects for the motivation, require-
ments analysis, and evaluation of the OWebSync middleware.
The first case study is an online software service from eWork-
force. eWorkforce is a company that provides technicians
to install network devices for different telecom operators at
their customers’ premises. The second company is eDesign-
ers, who offers a web-based design environment for graphical
templates that are applied to mass customer communication.

eWorkforce has two kinds of employees that use the online
software service: the helpdesk operators at the office and
the technicians on the road. The helpdesk operators accept
customer calls, plan technical intervention jobs and assign
them to a technician. The technicians can check their work
plan on a mobile device and go from customer to customer.
They want to see the details of the next job wherever they are,
and need to be able to indicate which materials they used for
a particular job. Since they are always on the road, a stable
internet connection is not always available. Moreover, they
often work in offline modus when they work in basements to
install hardware. Writing off all used materials is crucial for
correct billing and inventory afterwards.

The company eDesigners offers a customer-facing multi-
tenant web app to create, edit and apply graphical templates
for mass communication based on the customer’s company
style. Templates can be edited by multiple users at the same
time, even when offline. When two users edit the same docu-
ment, a conflict occurs, and the versions need to be merged.
Edits that are independent of each other should both be ap-
plied to the template (e.g. one edit can change the color of an
object, another edit the size). When two users edit the same
property of the same object, only one value can be saved. This
should be resolved automatically as to not interrupt the user.
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Background, principles and approach. The previous sec-
tion described the overall goal of OWebSync. We now de-
scribe our motivation and rationale of the approach. Therefore,
we first discuss the advantages and problems of state-of-the-
art techniques such as Operational Transformation, operation-
based CRDTs and state-based CRDTs.

Operational Transformation (OT). Operational Transfor-
mation [6] is a technique that is often used to synchronize
concurrent edits on a shared document. For example, two
clients can edit the text ‘ABC’ concurrently, where one client
inserts ‘*’ at position 1, and another client removes the char-
acter at position 1. The former results in ‘A*BC’, the latter
in ‘AC’. To achieve the correct state (‘A*C’), the first client
needs to transform the incoming operation of the other client
to a deletion at position 2. This means the operation needs
to be transformed to the current local state. The problem is
that the transformation of the incoming operations of other
clients on the local current state can get very complex, and
that messages can get lost or can arrive in the wrong order.

Conflict-free Replicated Data Types (CRDTs). CRDTs [19]
are data structures that guarantee eventual consistency without
the need for explicit conflict handling during synchronization
by the application or the user. Conflict-free thus means that
conflicts are resolved automatically in a systematic and deter-
ministic way, such that the application or user doesn’t have to
deal with conflicts. There are two kinds of CRDTs: operation-
based (Commutative Replicated Data Types) and state-based
(Convergent Replicated Data Types).

Commutative Replicated Data Types (CmRDTs). CmRDTs
make use of operations to reach consistency, just like OT.
Concurrent operations in CmRDTs need to be commutative
and can be applied in any order. This way, there is no central
server needed to apply a transformation on the operations. As
with OT, CmRDTs need a reliable message broadcast channel
so that every message reaches every replica exactly once in
the correct causal order [18].

Convergent Replicated Data Types (CvRDTs). CvRDTs are
based on the state of the data type. Updates are propagated to
other replicas by sending the whole state and merging the two
CvRDTs. For this merge operation, there is a monotonic join
semi-lattice defined over the states of a CvRDT. This means
that there is a partial order defined over the possible states, and
that there is a least-upper-bound operation between two states.
The least-upper-bound is the smallest state that is larger or
equal to both states according to the partial order. To merge
two states, the least-upper-bound is computed and the result
is the new state. CvRDTs require little from the message
channel, messages can get lost or arrive out of order without a
problem, since the whole state is always communicated. The
main disadvantage is that the state can get quite large, and
needs to be communicated every time.

Delta-state CvRDTs. δ-CvRDTs [1] are a variant on state-
based CRDTs with the advantage that in some cases only part
of the state (a delta) needs to be sent for a correct synchro-

nization. When a client performs an update, a new delta is
generated which reflects the update. Each client keeps a list
of deltas and remembers which clients have already acknowl-
edged a delta. As soon as all clients have acknowledged a
delta, the delta can be discarded because the update is now
reflected in the state of all clients. If a client was offline for
some reason and has missed too many deltas, the full state
must be sent, just like normal state-based CRDTs.

δ-CRDTs have some problems when using them in web
applications. Browser-based clients come and go with a large
churn rate and it is often unclear if a client will come back on-
line in the future (e.g. browser cache cleared). Keeping extra
metadata for all those clients, to be able to synchronize only
the required deltas, can result in a large storage or memory
overhead to keep track of them at the server. One can always
discard the metadata for clients that were offline and send the
full state if they do come back online eventually. But this is
of course not efficient when the state is large and that client
already had most of the updates. Keeping metadata about all
browser-based clients and their versions also doesn’t match a
stateless web application architecture.

A variant of δ-CRDTs, called ∆-CRDTs [22], is proposed
as solution to this problem and is used in Legion [21]. ∆-
CRDTs are comparable to δ-CRDTs, but instead of keeping
track of the clients at the server, it includes extra metadata
about concurrent versions of all clients in the data model (e.g.
as vector clocks) to calculate the deltas dynamically. This
solves the problem of keeping track of all clients at the server,
but one might still need to synchronize the full state after long
disconnects.

Merkle-trees. Merkle-trees [11] or hash-trees are used to
quickly compare two large data structures. First each item in
a data structure is hashed. Then the hashes are combined in a
hash on top, often in a binary way, by combining two hashes
from a lower level into a single hash at the higher level. This
continues until the root of the tree is created with the top-level
hash. Two data structures can now be compared starting from
the two top-level hashes. If the top-level hashes match, the
data structures are equal. Otherwise, the tree can be descended
using the mismatching hashes to find the mismatching items.

Approach. OWebSync uses state-based CRDTs, which
require little from the message channel in comparison to
operation-based approaches. No state about other clients or
client-based versioning metadata needs to be stored. And even
after long offline periods, the missed updates can be computed
and synchronized seamlessly. To limit the overhead of mes-
sages with state exchanges between clients and server, we
adopt Merkle-trees in the data structure to find the items that
need to be synchronized efficiently. This data structure and its
building blocks is discussed in Section 3. Together with other
architectural performance tactics and implementation-level
optimizations we can achieve prompt and seamless synchro-
nization in interactive multi-user web applications. This is
discussed in Section 4.
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3 The OWebSync Data Model: Convergent
replicated data types with Merkle-trees

In this section we describe the conceptual data model of
OWebSync that web applications will need to use to en-
sure synchronization by the middleware. The data model
is a CvRDT for the efficient replication of JSON data struc-
tures, and applies Merkle-trees to quickly find data changes.
The CvRDT consist of two other types of CvRDTs: a Last-
Write-Wins Register (LWWRegister) [19] and an Observed-
Removed Map (ORMap) [19] extended with a Merkle-tree.
The LWWRegister is used to store values, such as strings,
numbers and booleans, in the leaves of the tree. The ORMap
is a recursive data structure that represents a map that can
contain other ORMaps or LWWRegisters.

Last-Write-Wins register (LWWRegister). This data struc-
ture contains exactly one value (string, number or boolean)
together with a timestamp of the last change of the value. The
data structure supports three operations: reading the value,
updating the value and merging a LWWRegister with another
one. Each update operation also updates the timestamp. The
merge operation will always result in the value and timestamp
of the latest update. The timestamp is only used when a con-
flict occurred, i.e. one or more clients have updated the value
concurrently. This conflict resolution strategy boils down to a
simple last-write-wins strategy.

Observed-Removed Map (ORMap). The Observed-
Removed Map is implemented using an Observed-Removed
Set (ORSet) as described by Shapiro et al. [19]. Internally, the
ORSet contains two sets, the observed set and the removed
set, to keep track of the items that are added to the set and
which items are removed. A unique ID (UUID [10]) is added
to each item to make it possible to add a removed item
back to the set, since it will have a different ID when added
again. The ORMap contains tuples with a value and an ID,
just like an ORSet, and an extra key. We add an extra hash
to the tuples in the ORMap to construct the Merkle-tree.
When the child is a LWWRegister, the hash is simply the
MD5-sum [16] of the value of that register. When the child
is another ORMap, the hash of it is the combined hash of
the hashes of all the children of that ORMap. This way,
when one value in a register changes, all the hashes of the
parents will also change, so that a change can be detected
by comparing the top-level hash only. Figure 1 shows the
internal structure of an ORMap. This data structure supports
four operations: reading the value of a key, removing the
value behind a key, updating the value of a key and merging
the ORMap with another one. The read operation will be
executed recursively to return a complete JSON object of the
whole sub-tree behind the provided key when the child is
also an ORMap, or will just return a primitive value if the
child is a register. When the remove operation removes an
item, only the ID needs to be kept internally and the whole
sub-tree of the removed item can be discarded. The update

 timestamp
 value

LWWRegister

 observed : G-Set<id, hash, key, value>
 removed : G-Set<id>

ORMap

 observed : G-Set<id, value>
 removed : G-Set<id>

OR-Set

 observed : G-Set<value>
 removed : G-Set<value>

2P-Set

 items : Set<value>

G-Set

Powered By�Visual Paradigm Community Edition

Figure 1: Class diagram of the CRDTs in OWebSync.

operation will update the value and the hashes. To merge two
ORMaps, the union of the respective observed and removed
set is taken, just like in a regular ORSet. Then, the hashes
of the Merkle-tree are compared to check for changes in
the children of the ORMap. When a mismatch is detected,
the merge is executed recursively to traverse the whole
Merkle-tree below that key to detect all the changes. The
conflict resolution of the ORMap boils down to an add-wins
resolution, i.e. a concurrent add and remove operation will
result in the item being present in the set, since each add will
get a new identifier. Concurrent edits to different keys can
be made without a problem. Edits to the same key will be
delegated to the child CRDT (either another ORMap or a
register).

Example. As an example, we illustrate the conceptual repre-
sentation of an application data object in the eDesigners case
study, as well as the resulting CRDTs in the OWebSync data
model. Figure 2 presents both the conceptual representation
(Figure 2a) as well as two of the CRDTs (Figure 2b). The
latter represents the internal structure of two CRDTs that form
the conceptual representation. First the key under which the
CRDT is stored in a key-value store is listed, then the internal
value of the CRDT. The first CRDT is an ORMap, the second
a LWWRegister. For conciseness, only the “top” and the “left”
properties are shown as children of “object36”. In the real
application all parameters as in Figure 2a are present.

Considerations and discussion. The current data model
is best suited for semi-structured data that is produced and
edited by concurrent users, like the data items in the case
studies: graphical templates, a set of tasks or used materials
for a task. In fact, any data that can be modeled in a tree-
like structure such as JSON, can tolerate eventual consistency
and doesn’t require constraints between the data, can use
OWebSync for the synchronization. This data model is less
suited for applications like online banking which requires
constraints such as: “your balance can never be less than
zero”. Text-editing is also not a great fit, because there is not
much structure in the data. If you would see text as a list of
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{
"drawings": {

"drawing1": {
"object36": {

"fill": "#f00",
"height": 50,
"left": 50,
"top": 100,
"type": "rect",
"width": 80

}
}

}
}

(a) Conceptual representation of a single data object.

* drawings.drawing1.object36:
uuid: 0a2f7bc2-129f-11e9-ab14-d663bd873d93
hash: 7319eae53558516daafac19183f2ee34
observed:

- uuid: 23c1259a-129f-11e9-ab14-d663bd873d93
hash: 65bdd1b610f629e54d05459c00523a2b
key: "top"

- uuid: 23c1259a-129f-11e9-ab14-d663bd873d93
hash: 67507876941285085484984080f5951e
key: "left"

...
removed:

* drawings.drawing1.object36.top:
uuid: 23c1259a-129f-11e9-ab14-d663bd873d93
hash: 65bdd1b610f629e54d05459c00523a2b
value: "100"
timestamp: 789778800000

(b) Structure of two CRDTs that represent “object36” and the property “top”.

Figure 2: Datastructure of the eDesigners case study.

characters, it would result in a tree with one top-level node
(the document) and one layer with many child nodes (the
characters). There won’t be much benefit in using a Merkle-
tree. OWebSync also expects that no client is malicious.

In the current OWebSync data model, the removed-set of
the ORMap keeps the IDs of all removed children eternally
(so-called tombstones). As a result, the size of an ORMap can
accumulate over time and performance will degrade. With
a modest usage of deletion this will not be a large problem.
Even when you remove a large sub-tree of several levels deep,
only the ID of the root of the sub-tree is kept in the removed-
set of the parent. All other data will be removed and is not
needed anymore for correct synchronization. At the moment,
OWebSync does not implement a solution for cleaning up
tombstones, but one strategy could be to simply permanently
remove all tombstones that are older than one month. We then
expect that a client will not be offline for more than a month
while performing concurrent edits. This can be enforced by
automatically logging out the user after a month of no usage.

An extra kind of conflict is possible when assigning dif-
ferent kinds of CRDTs to the same path. Then the merge-
operation of the defined CRDTs cannot be used to resolve
the conflict automatically. This is solved by posing an or-
der on the possible CRDTs, e.g. LWWRegister < ORMap.
This means that when such a conflict occurs, the ORMap is
selected as actual value, while the LWWRegister is discarded.

Next to primitive values and maps, the JSON specification
contains also the concept of ordered lists. This is currently
not supported by OWebSync, and just like Swarm [32], we
focused on the initial key data structures: last-write-wins reg-
isters and maps. Keeping a total numbered order, like lists do,
is rarely needed and we did not need them for our two case
studies. Unique IDs in a map are better suited in a distributed
setting. In the case studies, the ordering of items in a set was

also based on application-specific properties such as dates,
times or other values, instead of an auto-incremented number
of a list. Note that CvRDTs for ordered lists do exist ( [17,19])
and could be added in future work.

Adding new kinds of CRDTs to the data model is straight-
forward. An existing CvRDT can be used as is, except for
an extra hash to be part of the Merkle-tree. For a CRDT that
represents a leaf value (e.g. a Multi-Value Register [19]), the
hash is simply the hash of that value. For CRDTs that can
contain other values (e.g. a list [17]), a hash needs to be added
that combines the hashes of all the children.

4 Web-based synchronization architecture

In this section we describe the deployment and execution
architecture of the OWebSync middleware as well as the
synchronization protocol. This middleware architecture is
key to support the data model and synchronization model
described in the previous section. We also elaborate on a set
of key performance optimization tactics to achieve continuous,
prompt synchronization for online interactive clients.

Overall architecture. The middleware architecture is de-
picted in Figure 3 and consists of loosely-coupled client and
server subsystems. First, the client-tier middleware API is
fully implemented in JavaScript and completely runs in the
browser without any need for add-ins or plugins. The server
is a light-weight process listening for incoming web requests
and storing all shared data. The server is only responsible for
data synchronization and does not run application logic. Both
the clients and server have a key-value store to make data
persistent on disk. The many clients and server communicate
using only web-based HTTP traffic and WebSockets [7]. All
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Figure 3: Overall architecture of the OWebSync middleware

communication messages between client and server are sent
and received using asynchronous workers inside the client and
server subsystems. We first further elaborate on the client-tier
subsystem with the public middleware API for applications,
and then describe the client-server communication protocol
for synchronization in detail.

Client-tier middleware and API. The public program-
ming API of the middleware is located completely at the
client-tier. Web applications are developed as client-side
JavaScript applications that use the following API:

• GET(path): Returns a JavaScript Object or primitive
value for a given path.

• LISTEN(path, callback): Similar to a GET, but every
time the value changes, the callback is executed.

• SET(path, value): Create or update a value at a given
path.

• REMOVE(path): Remove the value or sub-tree at the
given path.

The OWebSync middleware is loaded as a JavaScript library
in the client and the middleware is then available in the global
scope of the web page. One can then load and edit data using
typical JavaScript paths. An example from the eDesigners
case study:

let d1 = await OWebSync.get("drawings.drawing1");
d1.object36.color = "#f00";
OWebSync.set("drawings.drawing1", d1);

The difference between the levels of hierarchy is as fol-
lows. The object at "drawings.drawing1" is fetched from
disc and is represented as a JavaScript object in-memory. If
there would be other drawings (e.g. drawing2), they won’t be
loaded. The access to "d1.object36.color" is just a plain
JavaScript object access and has nothing to do with OWeb-
Sync. For performance reasons, it is best to always scope to
the smallest possible object from the database, in this example
that would be like this:

OWebSync.set("drawings.drawing1.object36.color",
"#f00")

Synchronization protocol. The synchronization protocol
between client and server consists of three key messages, that
the client can send to the server and vice versa:

• GET(path, hash): the receiver returns the CRDT at a
given path if the hash is different from its own CRDT at
the given path.

• PUSH (path, CRDT): the sender sends the CRDT data
structure at a given path and the receiver will merge it at
the given path.

• REMOVE(path, uuid): removes the CRDT at a given
path if the unique identifier (UUID) of the value is match-
ing the given UUID. As such, a newer value with a dif-
ferent UUID will not be removed.

The protocol is initiated by a client, which will traverse the
Merkle-tree of the CRDTs. The synchronization starts with
the highest CRDT in the tree. The client will send a GET
message to the server with the given path and hash value of
the CRDT. If the server concludes that the hash of the path
matches the client’s hash, the synchronization stops. All data
is consistent at that time.

If the hash does not match, the server returns a PUSH
message with the CRDT that is located at the path requested
by the client. This doesn’t include the child CRDTs, only the
metadata (key, UUID and hash) of the immediate children.
The client must merge the new CRDT with the CRDT at
its requested path. This merger process at the client might
detect conflicting children in the tree by comparing the hashes.
The client will then PUSH the CRDTs of those conflicting
children to the server. The server then needs to merge those
CRDTs. If a child does not exist yet, an empty child is created
and a GET message is sent.

The process continues by traversing the tree and exchang-
ing PUSH and GET messages until the leaves of the tree are
reached. The CRDT in this leaf is a register and can be merged
immediately. All parents of this leaf are now updated such that
finally the top-level hash of client and server match. If the top-
level hashes do not match, other updates have been done in the
meantime, and the process is repeated. Per PUSH-message
that is sent, the process descends one level in the Merkle-tree.
It is therefore limited to the depth of the Merkle-tree.

If during a merger process, a child seems to be removed
at one side, but not at the other side, a REMOVE message
is sent to the other party so that it can remove that value
and add the UUID to the removed set of the correct ORMap.
Alternatively, this additional third message type of REMOVE
could be avoided if a PUSH of the parent would be sent
instead. However, the push of a parent with many children
would cause a serious overhead compared to a REMOVE
message with only a path and a UUID.

Figure 4 shows an example for the eDesigners case study
where the client changed the color of an object. If the client
had made multiple changes, e.g. he also changed the height,
the start of the synchronization protocol would be the same,
except that the height will also be included in message five.
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Client Server

6: []

5: [PUSH "drawings.drawing1.object36.color"]

4: [PUSH "drawings.drawing1.object36"]

3: [PUSH "drawings.drawing1"]

2: [PUSH "drawings"]

1: [GET "drawings"]

Figure 4: Synchronization protocol when the client made an
update. With every PUSH message, the respective CRDT is
sent. E.g. for message 4, the first CRDT in Figure 2b is sent.

Performance optimization tactics. The main optimization
tactic to achieve prompt synchronization for interactive appli-
cations is the reduction of network traffic by the Merkle-trees.
However, there are additional tactics needed to further im-
prove synchronization time. The protocol discussed above
leads to many messages between clients and server. To reduce
the chattiness and overhead of the synchronization protocol
between the many clients and server, different optimization
tactics are applied by the client and the server.

Message batching. In the basic protocol explained above,
all messages are sent to the other party as soon as a mis-
match of a hash in the Merkle-tree is detected. This leads to
lots of small messages (GET, PUSH, and REMOVE) being
sent out, and as a consequence, many messages are coming
in while still doing the first synchronization. This results in
many duplicated messages and doing a lot of duplicated work
on sub-trees, since the top-level hash will only be up-to-date
when the bottom of the tree is correctly synchronized, and not
when another synchronization round is already busy some-
where halfway in the tree. To solve this problem, all messages
are grouped in a list and are sent out in batch after a full pass
of a whole level of the tree has occurred. At the other side,
the messages are processed one by one, and all resulting mes-
sages are again grouped in a list, and then are sent out after the
incoming batch was fully iterated. If no further messages are
resulting from the processing of a batch, an empty list is sent
to the other party. This ends the synchronization. As a result,
a lot less messages are sent between a client and server, and
only one synchronization per client is occurring at the same
time, resulting in no duplicated messages and no duplicated
work on sub-trees.

Concurrent processing of message batches. Message batch-
ing eliminated the concurrent processing of many small mes-
sages that could lead to a lot of duplicated work on sub-trees.

However, because it processes the messages in a batch one
by one, there is no more concurrent processing at all and the
synchronization time increases. To solve this problem, the
messages in one batch are processed concurrently.

Extra levels in the Merkle-tree. When the number of child
values in an ORMap increases, all the metadata for those
children (key, UUID and hash) needs to be sent each time
during the synchronization to check for changes. This leads
to very high network usage, since it cannot make use of the
Merkle-tree efficiently. To solve this problem, we introduced
extra, virtual, levels in the Merkle-tree. Whenever an ORMap
needs to be transmitted which contains many children (i.e.
hundreds), instead an extra Merkle-tree level is sent. This
extra level combines the many children in groups of e.g. 10.
This number can be adapted to the total number of children.
As a result, 10 times less hashes will be sent, combined with
the key-ranges the hashes belong to. The other party can ver-
ify the hashes and determine which ones are changed and
then push the 10 children for which the combined hash didn’t
match. This improvement leads to a slight delay in synchro-
nization time since it adds one extra round-trip, but when
only a small part of the children is updated, it uses much less
bandwidth.

5 Performance evaluation

The performance evaluation will focus on situations where
all clients are continuously online, as well as on situations
where the network is interrupted. For online situations, we
are especially interested in the time it takes to distribute and
apply an update to all other clients that are editing the same
data. For the offline situation we are especially interested in
how long it takes for all clients to get back in sync with each
other after the network disruption.

The performance evaluation in this paper is performed us-
ing the eDesigners case study, as this scenario has the largest
set of shared data and objects between users. The eWorkforce
case study has less shared data with less concurrent updates
as technicians typically work on their own data island and the
data contains less objects with less frequent changes. To com-
pare performance, we implemented the eDesigners case study
four times on four representative JavaScript technologies for
web-based data synchronization: our OWebSync platform,
which uses state-based CRDTs with Merkle-trees, Yjs [33]
which uses operation-based CRDTs, and ShareDB [30] which
makes use of OT. We used Legion [21] for testing delta-
CRDTs. Both Yjs (845 GitHub stars) and ShareDB (2129
GitHub stars) are widely-used open source technologies that
are available on GitHub. Legion is not widely-used in produc-
tion, but is currently the only implementation of delta-CRDTs
in JavaScript to the best of our knowledge. We did not evalu-
ate Google Docs, which uses OT, because it is text based, and
can not be used to synchronize the JSON-documents used in
the benchmark. Instead we opted for ShareDB.
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Benchmark setup. Both the clients and the server are de-
ployed as separate Docker containers on a set of VMs in our
OpenStack private cloud. A VM has 4 GB of RAM and 4
vCPUs and can hold up to 3 client containers. A client con-
tainer contains a browser which loads the client-side OWeb-
Sync middleware from the server. The middleware server
is deployed on a separate VM. The monitoring server that
captures all performance data is also deployed on a separate
VM. Pumba [28] is used to artificially increase the latency
between the containers to an average of 100 ms with 50 ms
jitter which resembles the latency of a bad 4G network.

Our evaluation contains 48 benchmarks: 6 benchmarks to
be executed by each of the 4 technologies, in both a continu-
ous online setting as well as in a disconnected situation. These
6 benchmarks vary in number of clients and data size: 8, 16,
or 24 clients are performing continuous concurrent updates on
100 or 1000 objects in a single shared document. Each client
performs a random write on a shared object every second. We
thus use at most 24 clients, which are editing the same doc-
ument concurrently. In comparison, Google Docs (the most
popular collaborative editing system today) supports a maxi-
mum of 100 concurrent users according to Google itself [25].
But in practice, latency starts to increase significantly when
the number of users exceeds 10 [3]. Our performance results
show the same problem for the other operation-based synchro-
nization middlewares.

In our performance evaluation, one iteration of a bench-
mark takes about 11 minutes. The first 3 minutes are used to
populate the database, to perform the initial synchronization,
and to execute a minute of warm-up. Then we measure the
performance of 8 minutes of continuous updates. Finally, we
wait until all updates are synchronized with a maximum of
15 minutes.

To ensure stability and consistency of the benchmark results
on our private cloud, we first validated the performance results
by repeating the benchmark 100 times. This resulted in about
13 hours of recorded data to validate the consistency of the
performance metrics. In order to execute all 48 benchmarks
for this paper, we reduced the number of iterations to 10. This
showed the same consistency and stability of the performance
results. The 10 iterations take in total 110 minutes and provide
us with 80 minutes of data2 for each benchmark (initialization
time and warm up period excluded) in which each client
makes one update every second.

Performance of continuous online updates. The follow-
ing performance measurements quantify the statistical divi-
sion of the time it takes to synchronize a single update to
all other clients in the case of a continuous online situation.

2Tables with the detailed performance results have been submitted as
supplementary material. The raw logs of all 48 benchmarks, and the graphical
analysis in boxplots of each iteration (to verify the consistency), are available
on an anonymous Azure storage account: https://owebsyncdata.blob.
core.windows.net/logs/data.zip

First of all, Yjs failed to synchronize all updates within the
15 minute waiting time for the benchmarks with 24 clients, as
well as for the benchmark with 16 clients and 1000 objects.
The success rate of the actually synchronized updates was
between 13% and 37%. ShareDB, Legion and OWebSync did
not fail to synchronize all updates. The synchronization times
of the succeeded updates are illustrated in Figure 5.

Analysis of the results. For the benchmark with 8 clients and
100 objects, both Yjs and ShareDB synchronize the updates
faster than OWebSync and Legion. For these two operation-
based approaches, 99% is below 0.6 seconds. OWebSync
needs about 2.3 seconds for synchronizing the 99th percentile
and for Legion the 99th percentile is at 3.6 seconds. The rea-
son for this is that OWebSync and Legion don’t keep track
of which updates are sent to which client. Hence, each time
one wants to synchronize the data, a few extra round-trips
are required to calculate which updates are needed. Yjs and
ShareDB can just send the operations. On a faster network,
i.e. with less latency, both Legion and OWebSync will syn-
chronize faster than in this benchmark (since the time for a
round-trip will be less), but will never be able to match the
performance of operation-based approaches.

This changes when the scale of the benchmark increases.
For the benchmark with 24 clients and 1000 objects, OWeb-
Sync and Legion become faster with a maximum of respec-
tively 2.7 and 4.2 seconds for the 99th percentile. Yjs and
ShareDB require tens of seconds for the 50th percentile and
even hundreds of seconds for the 90th percentile. With this
number of clients and this size of the data, keeping track
of all the clients and maintaining exactly-once semantics of
operation delivery, give a large overhead.

We can conclude that the synchronization times of OWeb-
Sync and Legion only slightly increase when scaling up to
1000 objects and 24 clients. Moreover, all the OWebSync
benchmarks show consistent results during their 10 iterations,
while Legion has some ill-performing outliers. However, the
update times for Yjs and shareDB increase significantly when
increasing the number of clients. For the Yjs and ShareDB
benchmarks with 24 clients and 1000 objects, the results start
to increase and fluctuate more as these technologies start to
struggle with the scale of the benchmark.

Network trade-off. The trade-off for this scalable, prompt
synchronization, is that OWebSync has the largest network
usage of all tested technologies (Figure 6). The usage of
Merkle-trees reduced the network usage with about a factor
8 in the worst case (1000 objects under a single node in the
tree). Introducing extra levels in the Merkle-tree for nodes
with many children lowered the bandwidth another factor 3.
Even in the benchmark with 24 clients and 1000 objects, the
used bandwidth is only 280 kbit/s per client. This is much less
than the available bandwidth, which is on average 27 Mbit/s
on a mobile network in the US [31]. In this same benchmark,
the server consumes about 6.7 Mbit/s, which is acceptable for
a typical data center.
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Figure 6: Network usage per client for each benchmark. Some
technologies use less bandwith when the scale increases, be-
cause the time to synchronize increases even more.

The data structure has an important effect on the network
usage. One might create a tree-structure with few nodes which
have many children. This will make the Merkle-tree less
useful, since the metadata of all the children needs to be
exchanged to be able to determine which children are updated.
The other possibility is that there are less children per node,
but with an increased depth of the tree. This positively affects
the network usage, as less metadata will need to be exchanged.
However, synchronizing the whole tree will take more round-
trips as there are more levels in the tree to go through.

Interpretation and discussion. For interactive web applica-
tions, usability guidelines [13] [14] state that remote response
times should typically be 1 to 2 seconds on average. 3 to 5
seconds is the absolute maximum before users are annoyed.
The user is often leaving the web application after 10 seconds
of waiting time. We start from these numbers to assess the
update propagation time between users in a collaborative in-
teractive online application with continuous updates. We are
interested in the waiting time for a user to receive an update
from another online user. These numbers should be achieved
not only for the average user (the mean synchronization time)

but also for the 99th percentile (i.e. most of the users [4]).
The mean synchronization time for the OWebSync bench-

mark with 24 clients and 1000 objects is around 2.2 seconds.
The 99th percentile is at the border line of annoyance with
2.7s. Yjs and ShareDB operate with sub-second synchroniza-
tion times when sharing 100 objects between 8 writers. When
the number of objects and writers increases, the synchroniza-
tion time raises to tens of seconds for the 50th percentile,
and hundreds of seconds for the 99th percentile. This is in
line with the observations of Dang et.al. [3] for Google Docs,
which uses the same approach as ShareDB (OT).

Performance in disconnected scenarios. We now present
the performance analysis for the case when the network be-
tween one client and the server goes down. In these bench-
marks, we have an analogous benchmark setup. However,
during the 11 minute execution, we start dropping all mes-
sages after 3 minutes (2 minutes in the actual test as the first
minute is used as warm-up) for 1 minute using Pumba [28].
Again, Yjs only succeeds in synchronizing 10% to 23% of
the updates for the benchmarks with 24 clients.

Analysis of the results. The boxplots of these benchmarks
(Figure 7) show that OWebSync can synchronize all missed
updates faster than Yjs, ShareDB and Legion. In summary,
the time to synchronize all missed updates in case of network
failure for OWebSync is between 2.1 and 5.8 seconds, which is
acceptable for interactive online web applications. The other
technologies need tens or hundreds of seconds to process
all of the missed updates. Yjs and ShareDB need to replay
all missed operations on the client that was offline. This is
due to their operation-based nature. OWebSync only needs
to merge the new state, which it does in exactly the same
way as if the failure never happened. Legion could keep up
with OWebSync in the online scenario, but now we see that
resynchronization after a failure starts to take longer when the
scale of the benchmark or the size of the dataset increases.
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(a) Evolution of the time to synchronize updates in the benchmark
with 8 clients, 100 objects and network failure.
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(b) Evolution of the time to synchronize updates for the benchmark
with 24 clients, 1000 objects and network failure.

Figure 8: Mean time to synchronize updates after the network failure, without the time during the failure taken into account.

Timeline analysis of the benchmarks. The timeline graphs
in Figure 8 show the resynchronization times on the y-axis,
without the offline time during the failure, for each update
done at a given moment during the benchmark timeline (x-
axis). This means that for an update done 20 seconds before
the end of the failure, and which got synchronized 22 seconds
later, the resynchronization time is 2 seconds.

Figure 8a shows this for 8 clients and 100 objects. The
first two minutes show consistent synchronization times for
all four technologies. In this part of the benchmark, OWeb-
Sync and Legion are the slowest, as was the case for the
online situation. After those two minutes, the network of one
client is disrupted. One minute later, the network is repaired
and the synchronization times drop as full synchronization is
possible again. OWebSync returns immediately to the same
performance as before the failure. ShareDB and Legion also
achieve the original performance again, but this takes about
half a minute. Yjs will block the synchronization of new up-
dates to first synchronize missed updates from during the
failure, and only then resumes normal synchronization. This
leads to an extra peak in synchronization time right after the
failure and it takes several minutes for Yjs to stabilize again.

In the benchmark with 24 clients and 1000 objects (Fig-
ure 8b), OWebSync still returns to the same performance as
before the failure after about 20 seconds. Legion needs half
a minute, but at that time, not all of the missed updates are
fully synchronized yet. ShareDB takes several minutes to
achieve this. Yjs clients can no longer handle the combination
of ongoing updates and delayed updates, and start failing to
synchronize after 4 minutes due to client-side load.

Summary. Our evaluation shows that the operation-based
approaches work well in continuous online situations with
a limited number of users. They can synchronize faster than
OWebSync and Legion. However, when network disruptions
occur, or when the number of users scales up, these technolo-
gies cannot achieve acceptable performance and need tens or
hundreds of seconds to achieve synchronization.

∆-CRDTs can improve the scalability in the online scenario,
but take a longer time to synchronize after a network failure.
OWebSync can then achieve much better performance in the
order of seconds, which is still acceptable for interactive web
applications. Table 1 summarizes the results in seconds of
the large scale benchmark (24 clients, 1000 objects) for the
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average user (50th percentile) and most of the users (99th
percentile) for both the online and offline setting.

In a setting with frequent offline situations, e.g. with mobile
employees, OWebSync is the more appropriate technology
and outperforms all other technologies. Multiple clients going
offline will only widen this gap. In a well-connected online
situation, e.g. with only LAN-connected employees in the
back office, Legion offers better scalability in terms of net-
work usage, but that is not really a resource constraint in such
setting.

online offline
50% 99% 50% 99%

Yjs 74.9 509.7 34.0 442.5
ShareDB 13.8 129.9 30.1 321.7
Legion 1.9 4.2 9.1 44.7
OWebSync 2.2 2.7 3.4 5.8

Table 1: Summary of the synchronization times in seconds.

6 Other related work

The related work consists of three types of work: 1) con-
cepts and techniques such as CRDTs and OT, 2) NoSQL data
systems such as Dynamo and Cassandra, as well as 3) syn-
chronization frameworks for web clients. The concepts and
techniques were discussed in Section 2. In this section we
focus on the relevant NoSQL data systems and on synchro-
nization frameworks.

Distributed data systems and NoSQL. Based on the original
Dynamo paper [4], many other open-source NoSQL systems
have been developed for structured or semi-structured data, fo-
cusing on eventual consistency within or between data centers.
CouchDB [24] and MongoDB [26] focus on semi-structured
document storage, typically in a JSON format. CouchDB of-
fers coarse-grained versioning per document and stores mul-
tiple versions of the document. Applications need to resolve
the conflicts between the versions. Moreover, it also does not
support fine-grained conflict detection or merging within two
JSON documents. Riak [29] is a server-side key-value store
like Amazon Dynamo, but also supports more fine-grained
data structures such as state-based CRDTs (registers, coun-
ters, sets and maps). It does not support client-side data repli-
cas, Merkle-trees for synchronization, or long-term offline
usage. Antidote [23] is a research project to develop a geo-
replicated database over world-wide data centers. It adopts
operation-based commutative CRDTs for highly-available
transactions. It supports partial replication but assumes con-
tinuous online connections as the default operational situa-
tion. Cimbiosys [15] is an application platform that supports
content-based partial replication and synchronization with
arbitrary peers. While it shares some of the goals of OWeb-
Sync, it is best suited to synchronize collections of media

data (e.g. pictures, movies) and not for JSON documents with
fine-grained conflict resolution.

Client-tier JavaScript-libraries for synchronization. Many
JavaScript frameworks have appeared to enable synchroniza-
tion between web browsers and server-side data systems.
PouchDB [27] is a client-side JS library that can replicate
data from and to a CouchDB server. Local data copies are
stored in the browser for offline usage. PouchDB only sup-
ports conflict detection and resolution at the coarse-grained
level of a whole document. ShareDB [30] is a client-server
framework to synchronize JSON documents and adopts OT as
synchronization technique between the different local copies.
ShareDB can thus not be used in extended offline situations.
In case of short network disruptions it can store the operations
on the data in memory and resend them when the connection
restores. The offline operations are lost when the browser ses-
sion is closed. Yjs [12,33] is a JavaScript Framework for syn-
chronizing structured data and supports maps, arrays, XML
and text documents. All data types also use operation-based
CRDTs for synchronization. Legion [21] is a framework for
extending web applications with peer-to-peer interactions. It
also supports client-server usage and uses delta-state CRDTs
for the synchronization. Swarm.js [32] is a JavaScript client
library for the Swarm database and uses a Replicated Object
Notation (RON). RON is based on operation-based CRDTs
with a partially ordered log for synchronization after offline
situations. It currently only supports sets and basic values
like string and int. Swarm.js also focuses on peer-to-peer ar-
chitectures like chat applications and decentralized CDNs,
while OWebSync focuses on client-server line-of-business
applications.

7 Conclusion

This paper presented a web middleware that supports seamless
synchronization of both online and offline clients that are
concurrently editing shared data sets.

Our OWebSync middleware implements a data model that
combines state-based CRDTs with specific enhancements
based on Merkle-trees. Due to the enhancements in our data
model and performance tactics in our supporting middleware
architecture, we were able to achieve prompt and fine-grained
synchronization for online interactive web applications with
continuous concurrent updates.

Our comparative evaluation shows that the operation-based
approaches cannot achieve acceptable performance in case
of network disruptions or larger scale settings and need tens
or hundreds of seconds to achieve synchronization. Current
state-based approaches using delta-CRDTs are more scalable
than the operation-based ones, but cannot achieve timely syn-
chronization after being offline. The state-based approach
with Merkle-trees of OWebSync can achieve better perfor-
mance in the order of seconds, which is still acceptable for
interactive web applications.
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