The web browser as distributed application server:
towards decentralized web applications in the edge

Kristof Jannes
imec-DistriNet
KU Leuven, Belgium
kristof.jannes@cs.kuleuven.be

ABSTRACT

Web applications are evolving to a decentralized, client-
centric architecture in which browsers need to be able to put
the user back in control of his personal data, need to be able
to operate in disconnected settings, and need to offload the
web server as much as possible.

This paper presents a set of key application scenarios and
trends in different business domains that require a more
client-centric and data-centric web middleware for decen-
tralized, peer-to-peer web applications in the edge. We define
a set of key requirements for data operations in such mid-
dleware and motivate them with the application cases.

This paper further discusses the current state and limita-
tions of the browser as platform for peer-to-peer communi-
cation and complex decentralized applications with shared
data. We conclude with a performance assessment of our
first prototype middleware for client-centric and data-centric
peer-to-peer web applications.

1 INTRODUCTION

The Web has changed a lot since the original proposal for
the World Wide Web thirty years ago. Static web pages using
basic HTML evolved to become dynamic, server-side appli-
cations and later have become fully functional single-page
web applications using JavaScript on the client-side. This
enables the offloading of visualization logic and functionality
from the server to the client, and thus freeing up resources
on the server, enabling better scalability. Moreover, in to-
day’s always-connected environment, tunnels and airplanes
should not discontinue fluent operations of web applications.
Browsers and client-side web technology also offer more and
more capabilities to enable fully client-side web applications
that can operate in a disconnected setting (e.g. extended
local storage with query technology and service workers
that support offline operation). As such, web applications
are replacing native programs in many places.

However, the basic paradigm of the web and the browser
is still server-centric. The key data is stored, served, pro-
cessed and analyzed on central servers owned by the service
provider. As said by Tim Berners-Lee, the founder of the web:
over the years, we’ve lost control of our personal data [2].

Bert Lagaisse
imec-DistriNet
KU Leuven, Belgium
bert.lagaisse@cs.kuleuven.be

Wouter Joosen
imec-DistriNet
KU Leuven, Belgium
wouter.joosen@cs.kuleuven.be

To regain control, the web should evolve to a decentralized
network, where data can be stored in places under control of
the user. To come to a fully decentralized web, living in the
edge, browsers need to shift from the client-server paradigm
to a peer-to-peer (P2P) approach. This kind of decentral-
ized web application architecture should be supported by
both the browser and the client-side web middleware. This
client-side platform will be responsible to let the different
clients connect to a decentralized fabric of clients in the edge.
Moreover, each client-side node will be responsible for key
middleware services that were once the roots of the first
application servers in the 90’s: 1) coordinating consistency
over distributed storage, 2) executing data-centric operations
and key business logic, and 3) controlling data access.

The contribution of this paper is a case-study driven moti-
vation and analysis of a more client-centric and data-centric
web middleware for decentralized web applications in the
edge. Based on the three-fold motivation of disconnected
situations, offloading web servers and regaining control of
personal data, we put forward the need for more advanced
client-centric and data-centric web middleware that supports
decentralized web applications in a P2P network of browsers.
We focus on data-centric operations such as data storage,
data replication and synchronization, well-scoped data shar-
ing and access control, as well as secure and privacy-aware
data queries and data analysis.

This paper is structured as follows. In Section 2 we first
present and discuss a set of key application scenarios and
trends that motivate our need for decentralized client-centric
web applications. We then define a set of key requirements
that must be supported by the underpinning data-centric
web middleware. Section 3 presents an analysis of the cur-
rent state of web browsers to assess to which extent such
decentralized web applications can already be supported. In
Section 4 we assess a first prototype of our middleware that
already supports P2P data synchronization to reduce the
load on web servers and operate in disconnected settings.
We conclude in Section 6.

2 MOTIVATION AND REQUIREMENTS

Even now that web applications are becoming fully func-
tional and stand-alone programs, they still need a central

server to store and synchronize the user data. This is needed
because data is often shared by multiple people, and the
latest version needs to be available to all of them. Even ap-
plications that only contain data of a single user, often need
to synchronize this between all the devices of that user (e.g.
laptop, tablet, phone). Storing the data on a central server
has several disadvantages. Web applications always need a
working internet connection to synchronize the data and
share their work with others. For data that is shared across
many users, the web server needs enough capacity to ensure
prompt synchronization, especially for web applications that
allow users to work together interactively. The data on the
central server is under control of the provider of the web
application. The provider might make security mistakes that
leak your data to the internet. Even when the data is secure,
the provider has access to it and can look into it at any time.

Motivating scenarios. Many web applications can benefit
from a more decentralized and P2P approach. Multi-player
games in particularly benefit from the decreased latency
by communicating directly between browsers. Next to low-
latency benefits for games, many enterprise level applica-
tions can benefit from the high availability and confiden-
tiality that a decentralized web application can bring. This
section will present three such enterprise level applications
as motivating examples for the use of a more decentralized
web, next to the current centralized approach. The examples
are based on real life case studies from our applied research
projects with industry.

The first application, eWhiteboard, is a shared whiteboard
which can be used by participants at a business meeting. All
people are in the same room, using their laptop or tablets
to access a web application where they can draw and write
ideas during their meeting. Everyone is immediately able
to see what others draw and can actively participate in the
discussion. Since they are all in one room, there is no reason
to use a central server which is under control of the company
that created the whiteboard web application. Instead, all com-
munication can happen P2P between the users’ browsers
over a local ad-hoc network. This even makes it possible to
hold such a meeting in cars, trains or even airplanes, since
there is no reliance anymore on the internet. The second
benefit is that the ideas, which might be of strategical impor-
tance to the company, never leak to third parties who are
not present at the meeting. All data is stored locally in the
browser and is only synchronized between the participants
of the meeting. Even the company of the whiteboard appli-
cation cannot access this data. However, each participant
might want to share the data with colleagues and store it to
a company server.

The second company is eDesigners. It provides a multi-
tenant web application for graphical templates. Templates
can be edited by several users at the same time, even when

offline. The base of the templates is provided by eDesigners
itself, while the customer companies make their own cus-
tomization’s on top of it. The base template of eDesigners is
accessible to all payed users. The customization’s that a com-
pany made on top of it can only be accessed by employees
of the same company or department within the company.
The third example is about eWorkforce, a company that
provides technicians to install network devices for different
telecom operators at their customers’ premises. The com-
pany has two kinds of employees: the help desk operators in
the office that accept customer calls and plan technical inter-
ventions by technicians; and technicians on the road that go
from customer to customer to install or repair network in-
frastructure. The technicians need to check their work plan,
enter used materials and indicate the status of a particular
intervention. Since they are always on the road, sometimes
working in cellars, internet is not always available. Yet, they
must still be able to complete their jobs and synchronize
their devices with the back-office once they are back online.
When multiple technicians are working on the same job, they
can synchronize their devices with each other. This way, no
used material is accidentally entered twice, or worse, for-
gotten because one employee thought another had already
entered it. The operators in the back-office normally have an
internet connection to the main server. In case of network
disruptions, a large company cannot tolerate to shut down
business for several hours. Instead they should be able to
continue working as usual. To prevent conflicts between the
operators, e.g. assigning the same technician to different jobs
at the same time, they can still synchronize their updates to
each other. The LAN network in the office will most likely
be intact. They can keep up-to-date with the latest changes
using P2P communication between the operators’ devices.
Analysis of the requirements. In this paragraph we present
a set of key requirements and features for decentralized,
client-centric web middleware. In our opinion, the basic ar-
chitecture of such middleware should be fully based on stan-
dard browser technology and its JavaScript programming
environment, and should not involve any plugins or add-ins
to the browser. The basic, core functionality should focus
on data-centric operations such as data storage, data replica-
tion and synchronization, data sharing as well as secure and
privacy-aware data queries and data analysis. The middle-
ware should first be able to synchronize updates promptly
to all other clients and solving conflicts in the data automat-
ically. These synchronizations might happen via a central
server in the back-office, or using direct browser-to-browser
communication. The latter is especially important for pri-
vacy sensitive SaaS applications used by any company that
doesn’t always want its data on a third-party server. At last,
there should even be a possibility to connect multiple clients
over a local ad-hoc P2P network to share updates in offline

situations (e.g. airplanes). As such, we distinguish a first set
of basic requirements and features:

(1) Operate continuously and without disruptions in a
disconnected situation using local storage.

(2) Support P2P synchronization between users when the
server is not available or overloaded. E.g. two designers
working on the same template in an airplane, both
using their tablet, should be able to synchronize.

(3) Efficient data synchronization on mobile connections.

(4) Synchronization of data items with interactive timing
constraints. E.g. when a first user edits the color of
an item on the whiteboard, another user sitting next
to him should receive this update promptly within
acceptable timing according to usability guidelines [8].

State of the art frameworks have already support for these
basic requirements. However, there are also a set of more
advanced requirements related to privacy-aware and secure
data sharing and data analysis:

(1) User-centric access control with selective sharing and
synchronization of data items. Each user should be able
to determine who can see what from the data the user
owns. In case of the eDesigners application for concur-
rent editing of templates, a designer needs to be able
to select which templates are shared with who.
Support for distributed select queries. Users might re-
quest specific data objects of another user using a typi-
cal select query. When a certain user shares a drawing
with another user, the drawing’s document identifier
appears in a list of shared documents. The other user
will query the drawing document using the data object
identifier from the first user.

(3) Decentralized data processing and analysis. In case of
the collaborative whiteboard application, the devel-
oper of the application, who is not controlling the data
on an application server, might want to know the fol-
lowing statistics: how many drawings is the average
user storing, how many drawings does a user create
per month, with how many people does an average
user collaborate on a drawing, how complex and large
is an average drawing, what kind of colors and forms
are mostly used in a drawing, ...

Based on these requirements we now analyze the current
state of the browser as platform for decentralized, client-
centric and data-centric web applications.

@

~

3 STATE OF THE BROWSER

This section will go into the technologies that are present in
browsers to enable a decentralized, offline web. It first covers
WebRTC, which enables browsers to directly communicate
with each other. Then we explain the JavaScript threading
model based on the event loop and the possibility to use

multiple threads. We explain how web applications can be
used offline. We end with the security model of the browser.

WebRTC. WebRTC (Web Real Time Communications) [1]
enables direct, P2P communication between browsers. Com-
munication is coordinated by the exchange of control mes-
sages over a separate signaling channel. This has serious
consequences, because two browsers that want to connect
to each other directly already need an indirect connection to
each other. The most user friendly option is to use a central
server for this. The browsers can send the control messages
to each other using normal HTTP requests or WebSockets
to the server, which will forward the message to the right
browser. Once the WebRTC connection is setup, the sig-
naling channel is no longer needed, and the browsers can
communicate with each other directly. The requirement of
having a central server for setting up the connection is a
problem in an offline situation, where you want to setup
a local P2P network. As a solution, it is possible to do the
signaling manually. One can use QR-codes to encode the
control messages. When initiating a P2P connection, you
let the web application generate a new QR-code which is
shown on the screen. The other party that you want to con-
nect to scans this code with his device. The web application
on his device generates a QR-code as a response. You scan
the QR-code and the connection can be established. You can
now repeat the process for all devices you want to connect
with. An existing WebRTC connection can also be used as a
signaling channel. So once you connect to a device, you can
also setup a P2P connection to its peers.

Next to the need of a signaling channel, Network Address
Translation (NAT) and firewalls pose additional problems.
NAT is used to overcome the shortage of IPv4 addresses.
NAT creates a local network where each client on that net-
work has its own local IP address. The NAT-box has a public
IP address and forwards all requests coming from a client
to the internet using its public IP address and remembers
which client made the request. This means that the IP ad-
dress that a client knows is not its public IP address, but only
a local IP behind the NAT-box. Browsers using WebRTC on
a different network cannot connect to you using your local
IP address. Session Traversal Utilities for NAT (STUN) is
used by a browser to discover its public IP address. Again, a
central server is needed (STUN-server) to setup a P2P con-
nection. Firewalls can make it impossible to setup a real P2P
connection, essentially because the browser needs to accept
connections from outside on some random port, which is not
always permitted. The solution for this is using Traversal
Using Relays around NAT (TURN), which will essentially put
a relay-server in between the P2P communication. This is
not a real browser-to-browser communication and therefore
has almost none of its advantages. It is provided as an op-
tion to make WebRTC connections more reliable. As long as

you have access to a TURN-server you can setup a WebRTC
connection, possibly via a TURN-relay.

The JavaScript event loop. JavaScript was once made for
building interactive and more complex user interfaces than
were possible using plain HTML. It uses only a single thread
with one event loop and a task queue to hold tasks, which get
executed one by one. That single main thread is responsible
for everything the web application needs to do: drawing the
page on the screen, executing the JavaScript code of the web
application and background data-synchronization to peers.
With the evolution of JavaScript, new features are added and
multiple queues exists for the event loop to choose from with
different priorities. One such queue is the microtask queue,
which handles Promises. A Promise is a JavaScript primi-
tive to allow you to write clear concurrent code, without
relying on callbacks. The browser will always first empty
the microtask queue, and only then return working on the
main task queue. This can delay the execution of tasks for a
long time when too many Promises are generated, especially
when those Promises also create new Promises. This leads
to temporary starvation of the task queue.

WebWorkers [6] are separate threads in the browser with
their own event loop. They can therefore run in parallel with
the main thread. The main thread is still the only thread that
can update the user interface. This allows to do heavy com-
putations on a separate worker thread, so the user interface
stays responsive, which leads to a better user experience.
The only possible communication between the main thread
and a worker is using message passing. There is no shared
memory between the two threads. While workers also run
JavaScript, not all APIs are available. For example the Web-
RTC API is missing in workers and can only be used from
the main thread. This means if one wants to do P2P synchro-
nization with other browsers, this synchronization needs to
happen on the main thread. One can offload the main thread
by only sending and receiving the messages on the main
thread and offloading the processing of it to one or more
worker threads. But still some part of the main thread will
be consumed. There are plans to allow WebRTC in workers
in the next version of WebRTC [3].

WebAssembly threads. WebAssembly [9] (Wasm) is a new
binary instruction format for the web. One can write pro-
grams in high-level languages like C++/Rust and compile
them to Wasm, which can be executed on the web. The Web-
Assembly Community Group is currently standardizing a
new feature called WebAssembly threads. Under the hood,
they are still using WebWorkers but they can make use of
the same shared memory.

ServiceWorkers [10] run in the background of the browser
and can be used to provide rich offline experiences, periodic
background sync and push notifications. A ServiceWorker
acts like a proxy and can intercept requests from your page.

One use case is to save requested pages in the cache. Later
on, when the ServiceWorker detects that there is no internet
connection, it can serve those cached pages to the user. This
allows users to open a page even when they are offline. They
can then use WebRTC to interact with other browsers and
share data, without the need for a central server (within the
boundaries of the current WebRTC implementation).

Security model of the browser. The current security policy
in the browser is based on the Same-Origin Policy. This al-
lows all scripts from the same origin (combination of scheme,
host name and port) to access the same data. Scripts com-
ing from another origin have their own data storage and
have no access to those of other origins. This security model
works fine when handling local, personal data. However, if
we want to enable a more decentralized, client-centric web
with shared data, where each client has their own local copy,
more security measures are needed.

First of all, data can be shared between multiple origins:
for example between a data storage provider and a service
provider. In the current client-server model, such informa-
tion would be requested from the server by the service
provider and be authenticated via e.g. OAuth [5]. In the
decentralized approach, that information might already be
present in the browser, but stored under a different origin.
Current implementations of the browser allow communica-
tion between scripts of multiple origins via message passing.
This can be used by the service provider to locally (in the
browser) request the required data from the storage provider,
which can provide the correct information from the local
copy, or download it from another storage location (be it
another browser or a server). Important here is that the stor-
age provider should have a way to verify the request coming
from the service provider, even in a disconnected situation.

Next to data sharing between different origins on the same
device, data can be shared between multiple devices, possi-
bly owned by different users via WebRTC. Again the same
story applies, independently from a central component, there
should be a way to verify if the request should be full-filled
or denied. A possible solution would be to use capabilities,
which are signed claims that can be verified without con-
tacting the authority that created it using cryptographic
primitives. The browser-to-browser communication itself us-
ing WebRTC is encrypted by default. In fact, using it without
encryption is not possible from within the browser.

4 PRELIMINARY EVALUATION

In this first preliminary evaluation we want to assess the
impact on performance of shifting from a server-centric
approach to a client-centric approach. A server-centric ap-
proach hosts the main copy of the data on the server and
all clients synchronize with this main copy. The threading

model of the server-side technology is optimized to handle
many concurrent updates with the different clients. So is the
database behind it. A client-centric P2P approach however
needs to handle the many concurrent updates from the other
clients using the threading model and P2P communication
model of the browser as discussed in Section 3. In this sec-
tion we thus assess if the decentralized client-centric P2P
approach can offload the server and achieve faster synchro-
nization for various scales of data sets and users.

We have started implementing a middleware which uses
state-based CRDTs [11] for the synchronization. Updates are
synchronized by computing deltas dynamically, as is also
the case in Legion [12]. The middleware can use WebSockets
to synchronize updates between clients via a central server.
This is the baseline used by most modern web applications
today. It can also be used in a P2P setting using WebRTC
to synchronize updates directly from browser-to-browser.
A WebSocket connection to the server is used as signaling
layer to setup the WebRTC connection.

We have implemented the shared whiteboard example
using our middleware and tested the performance in both
the classical client-server setting, as well as the P2P settings.
We decided to use our own middleware to be able to change
configurations and collect extensive metrics. In future work,
we want to extend that middleware to support our vision of
a decentralized, client-centric web.

Benchmark setup. The servers (including signaling and
TURN) and browser clients are deployed as separate Docker
containers on several VMs in our OpenStack private cloud.
A VM has 8 CPUs and 16 GB of RAM and can hold up to 6
client containers. A client container contains a Chromium
browser which loads the web application from a web server.
The Linux traffic tool (tc) is used to artificially increase the
latency between the containers to an average of 100 ms.
Which resembles the latency of a bad 4G network.

The benchmark is executed with 10 and 30 clients. Each
client makes one update per second to the shared data set.
The shared data consists of 1000 objects on a canvas, which
have properties like the position, size and color of the object.
A single run of a benchmark provides us with 10 minutes
of data. The 10 minute interval is preceded by a 1 minute
warm-up period. Each benchmark is repeated 10 times.

Baseline: client-server. The baseline for comparing the P2P
performance is an application that only synchronizes data
via the server. We’ve implemented the shared whiteboard in
a classical client-server architecture. The first two columns
of Table 1 show the synchronization times and the network
usage. The synchronization time is the time it takes for all
clients to receive an update made by one client. We show both
the median (50th percentile) as well as the 99th percentile
of these synchronization times. Not only the average client
should have a great performance, but most of the clients [4].

Peer-to-peer setup. Now we disable all synchronization via
the server, only P2P synchronization is allowed. The data
synchronization server now acts only as signaling layer to
setup WebRTC connections between each client. The P2P-
network is a fully-connected network where each peer is
connected to all other peers. The results are in the last two
columns of Table 1. Going from client-server to P2P com-
munication improved the mean synchronization time with
about 0.7 seconds. The network usage of each client raised to
1.2 Mbit/s in the large scale scenario with 30 clients, which
is still far away from the maximum bandwidth available to-
day. In comparison, the average download-bandwidth on a
mobile network today is 27 Mbit/s [13].

Limitations of the P2P solution. While the previous para-
graph talked about a full P2P solution, there were still two
central servers needed to setup the connection. The actual
data synchronization is indeed P2P and messages are sent
from one browser directly to the other. But to initiate the
connection, there is a signaling layer needed. This is imple-
mented as a central server which is connected to the web
applications via a WebSocket. The clients all have a unique
ID and can request the list of other clients from the signal-
ing server. The signaling server acts as a relay for control
messages. Clients can send WebRTC control messages to the
signaling server, combined with the ID of the destination.
The signaling server will forward it to the correct client. Next
to the central signaling server, a STUN server is needed for
clients to discover their real IP address. The signaling server
could be replaced by a manual procedure using e.g. QR codes.
The STUN server can be removed when all clients are on the
same network. This way, even during the setup phase, no
central servers are needed. We used the signaling server to
automate the tests, and STUN was needed because Docker
containers have their own local network on each VM.

Conclusion. Our preliminary evaluation shows that brow-
sers are ready to let the web evolve to use a decentralized,
client-centric approach. P2P communication increases the
interactivity of updates while the network usage stays low
enough to be able to run on a mobile network. The fully

client-server peer-to-peer
clients 10 30 10 30

Sync. time [s] 50% 1.9 2.3 1.1 1.6
99% 2.3 3.2 1.8 2.3
Bandwidth [Mbit/s] server 1.5 8.9 0.0 0.0
client 0.1 0.3 0.3 1.2

Table 1: Statistics for all benchmarks for the client-
server and peer-to-peer situations. Numbers are the
average over 10 tests of each 10 minutes with respec-
tively 6000 and 18000 updates made per test.

connected P2P network works great for the scale of the
benchmarks done already, but to scale to hundreds or thou-
sands of concurrent clients, more structured P2P-networks
will be needed.

5 RELATED WORK

The current client-centric web middleware platforms can
be divided into three categories: 1) GUI-focused JavaScript
frameworks (e.g. React and Angular), that only focus on local
data binding of data with GUI elements, 2) libraries that focus
on client-server REST communication (e.g. JQuery) and 3)
data-synchronization focused frameworks (e.g. PouchDB,
Yjs, Legion).

Some of these data-centric frameworks support P2P syn-
chronization when a central signaling server is available.
These synchronization frameworks help offloading the server
and allow disconnected operation. However, prompt synchro-
nization is only supported in small scale scenarios, i.e. tens
of users. PouchDB is a JavaScript library to replicate data (as
JSON-documents) with a CouchDB server. It doesn’t support
automatic fine-grained conflict resolution or P2P synchro-
nization. Yjs [7] is a framework for synchronizing differ-
ent data structures (maps, arrays, ...) using operation-based
CRDTs [11]. It supports WebRTC as adapter to synchronize
the changes to other clients. Legion [12] is a research proto-
type for P2P synchronization between web applications.

While the first four basic requirements we defined in Sec-
tion 2 are currently supported, the last three are still a chal-
lenge to achieve truly decentralized, client-centric web appli-
cations. None of these frameworks provide extensive access
control that help ensure the confidentiality of the data. They
also don’t provide any help with complex queries that run
over multiple browsers.

6 CONCLUSION AND FUTURE WORK

This paper defined a set of key requirements for data opera-
tions in a middleware for a decentralized, client-centric web
architecture. The move to such decentralized web applica-
tions in the edge is needed to allow operation in disconnected
situations, offload web servers and regain control of your
personal data.

We assessed the current state of the browser and its limi-
tations. WebRTC needs a signaling layer to connect to other
browsers and a STUN server is required to circumvent NAT.
The event-loop driven threading model of JavaScript is not
suited for large scale client-side application servers. How-
ever, WebWorkers and Wasm allow multiple execution lines.
Indeed, our preliminary evaluation, using WebRTC and Web-
Workers showed that interactive, P2P data synchronization
is suitable in a browser. Synchronization times were even
lower than the client-server variant.

More research is needed to scale up to hundreds or thou-
sands of users interactively accessing the same data set. Next
to the scalability, there are still 3 requirements missing before
fully decentralized web applications can exist: 1) user-centric
access control with selective sharing and synchronization of
data items, 2) support for distributed select queries, and 3)
decentralized data processing and analysis.

REFERENCES

[1] Bernard Aboba. 2018.
Working Draft. W3C.
WD-webrtc-nv-use-cases-20181211/

[2] Tim Berners-Lee. 2017. Three challenges for the Web, according to its
inventor. https://webfoundation.org/2017/03/web-turns-28-letter/

[3] Jan-Ivar Bruaroey, Daniel Burnett, Taylor Brandstetter, Cullen Jen-

nings, Anant Narayanan, Adam Bergkvist, and Bernard Aboba.

2018. WebRTC 1.0: Real-time Communication Between Browsers.

Candidate Recommendation. W3C. https://www.w3.org/TR/2018/

CR-webrtc-20180927/

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-

ramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: ama-

zon’s highly available key-value store. In ACM SIGOPS operating sys-

tems review, Vol. 41(6). ACM, ACM, New York, NY, USA, 205-220.

https://doi.org/10.1145/1294261.1294281

[5] D. Hardt. 2012. The OAuth 2.0 Authorization Framework. RFC 6749.
https://www.rfc-editor.org/rfc/rfc6749.txt

[6] Ian Hickson. 2015. Web Workers. Working Draft. W3C. http://www.
w3.org/TR/2015/WD-workers-20150924/

[7] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2015.
Yjs: A Framework for Near Real-Time P2P Shared Editing on Arbitrary
Data Types. In Engineering the Web in the Big Data Era. Springer
International Publishing, Cham, 675-678.

[8] Jakob Nielsen. 1993. Usability Engineering. Nielsen Norman Group.
https://www.nngroup.com/books/usability-engineering/

[9] Andreas Rossberg. 2018. WebAssembly Core Specifica-
tion. ~ Working Draft. W3C. https://www.w3.0rg/TR/2018/
WD-wasm-core-1-20180904/

[10] Alex Russell, Marijn Kruisselbrink, Jungkee Song, and Jake Archibald.
2017. Service Workers 1. Working Draft. W3C. https://www.w3.org/
TR/2017/WD-service-workers-1-20171102/

[11] Marc Shapiro, Nuno Perguica, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In SSS 2011 - 13th Inter-
national Symposium Stabilization, Safety, and Security of Distributed
Systems (Lecture Notes in Computer Science), Xavier Défago, Franck
Petit, and Vincent Villain (Eds.), Vol. 6976. Springer Berlin Heidelberg,
Berlin, Heidelberg, 386-400.

[12] Albert van der Linde, Pedro Fouto, Jodo Leitao, Nuno Preguica, Santi-
ago Castifieira, and Annette Bieniusa. 2017. Legion: Enriching Internet
Services with Peer-to-Peer Interactions. In Proceedings of the 26th In-
ternational Conference on World Wide Web (WWW °17). International
World Wide Web Conferences Steering Committee, Republic and Can-
ton of Geneva, Switzerland, 283-292. https://doi.org/10.1145/3038912.
3052673

[13] 2018. Speedtest.net. http://www.speedtest.net/reports/united-states/
2018/Mobile/.

WebRTC Next Version Use Cases.
https://www.w3.0rg/TR/2018/

[4

flaa)

https://www.w3.org/TR/2018/WD-webrtc-nv-use-cases-20181211/
https://www.w3.org/TR/2018/WD-webrtc-nv-use-cases-20181211/
https://webfoundation.org/2017/03/web-turns-28-letter/
https://www.w3.org/TR/2018/CR-webrtc-20180927/
https://www.w3.org/TR/2018/CR-webrtc-20180927/
https://doi.org/10.1145/1294261.1294281
https://www.rfc-editor.org/rfc/rfc6749.txt
http://www.w3.org/TR/2015/WD-workers-20150924/
http://www.w3.org/TR/2015/WD-workers-20150924/
https://www.nngroup.com/books/usability-engineering/
https://www.w3.org/TR/2018/WD-wasm-core-1-20180904/
https://www.w3.org/TR/2018/WD-wasm-core-1-20180904/
https://www.w3.org/TR/2017/WD-service-workers-1-20171102/
https://www.w3.org/TR/2017/WD-service-workers-1-20171102/
https://doi.org/10.1145/3038912.3052673
https://doi.org/10.1145/3038912.3052673
http://www.speedtest.net/reports/united-states/2018/Mobile/
http://www.speedtest.net/reports/united-states/2018/Mobile/

	Abstract
	1 Introduction
	2 Motivation and Requirements
	3 State of the browser
	4 Preliminary evaluation
	5 Related work
	6 Conclusion and future work
	References

