
OWebSync: A web middleware with state-based
replicated data types and Merkle-trees for fluent

synchronization of distributed web clients
#552

Abstract
A lot of enterprise software services are adopting a fully
web-based architecture for both internal line-of-business
applications and for online customer-facing applications. Al-
though wireless connections are becoming more ubiquitous
and faster, mobile employees and customers are however
not always connected. Nevertheless, continuous operation
of the software services is expected.

This paper presents OWebSync: a web-based application
middleware for the continuous synchronization of online
web clients and web clients that have been offline for a longer
time period. OWebSync implements a fine-grained data syn-
chronization model and leverages upon Merkle-trees and
convergent replicated data types to achieve the required per-
formance both for online interactive clients, and for resyn-
chronizing clients that have been offline.

In comparison with operation-based, generic middleware
solutions, that are based on operational transformation or
operation-based replicated data types, OWebSync scales bet-
ter to tens of concurrent editors on a single document, and
is also especially better in operating in and recovering from
offline situations. As a state-based approach, OWebSync can
achieve acceptable interactive performance with limited net-
work overhead. This has been validated and evaluated in
two industrial case studies.

Keywords Data synchronization, Offline web applications.

ACM Reference format:
#552. 2018. OWebSync: A web middleware with state-based repli-
cated data types and Merkle-trees for fluent synchronization of
distributed web clients. In Proceedings of EuroSys’19, Dresden, Ger-
many, March 25–28, 2019, 13 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Web applications have been the default architecture for many
online software services, both for internal line-of-business
applications such as CRM, HR, and billing, as well as for
customer-facing software service delivery. Native fat clients
are being abandoned in favor of browser-based applications.
Browser-based service delivery fully abstracts the hetero-
geneity of the clients, and solves the deployment and main-
tenance problems that come with native applications. Never-
theless, native applications are still being used when rich and
highly interactive GUIs are needed, or when applications

need to function offline for a longer time. The former reason
is disappearing more and more as HTML5 and JavaScript are
becoming more and more powerful and even benefit from
hardware acceleration. The latter reason should be disap-
pearing too with the venue of Wifi, 4G and 5G ubiquitous
wireless networks, even in tunnels and airplanes. However,
in reality connectivity is often missing for several minutes to
several hours. Mobile employees can be working in cellars or
tunnels, and customers sometimes want to use your services
while in an airplane.

A lot of native application-specific solutions and browser-
plugins exist to tackle the problem in an ad-hoc solution.
For example, a lot of Google web apps can be used in of-
fline modus. However, there is no generic, fully web-based
middleware solution that can be used by web applications
to:

1. support fine-grained and concurrent updates by dis-
tributed web clients on local copies of shared data,

2. operate conflict-free in online and offline situations,
3. achieve continuous synchronization for online clients

and fluent resynchronization for offline clients,
4. scale to tens (20-30) of online clients that concurrently

edit a single shared document with interactive perfor-
mance timings.

A lot of distributed NoSQL data systems, e.g. Amazon Dy-
namo [4], adopt synchronization based on Vector Clocks.
This often lead to conflicts that need application-level resolv-
ing. Text-based versioning such as Git does not always guar-
antee consistent data structures after synchronization. Code,
XML or JSON documents can end up malformed and often re-
quire user-level resolution. Operational Transformation [16]
approaches are often used for real-time synchronization in
interactive web applications (e.g. in Google Docs [21]) but
are not resilient against message loss in case of long-time
offline situations [8]. Commutative Conflict-free Replicated
Data Types [15] as used in Legion [17], SMAC [5] and the
JSON datatype of Kleppman [7] are also operation-based, but
don’t apply transformations to the operations. As such, the
operations are commutative and can arrive and be applied in
a different order. However, this technique also suffers when
operations are lost.

State-based Convergent Conflict-free Replicated Data Typ-
es [15] (CRDTs) are resilient against message loss, but have
often been considered as problematic with regard to the

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


amount of data that has to be transferred between all dis-
tributed entities, and therefore are considered less suited for
interactive, collaborative applications. State-based CRDTs
have been used in Riak [25] for example, to achieve back-
ground, asynchronous synchronization between back-end
data centers internally.

In this paper we present OWebSync1, a generic web mid-
dleware for browser-based applications, which supports con-
current updates on local copies of shared data between dis-
tributed web clients, and which supports continuous, fluent
and fine-grained synchronization between online clients.
The middleware supports fluent resynchronization when
clients were offline for a longer time, e.g. in case of net-
work failures. OWebSync leverages state-based CRDTs to
support synchronization between clients and server. Merkle-
trees [10] are used to enable more fluent synchronization of
state-based CRDTs and limit the amount of data that has to be
transferred. More specifically, OWebSync provides generic,
reusable JSON [2] based data types that web applications can
leverage upon to model their application data. These data
types support fine-grained and conflict free synchronization
of all items in the JSON documents.

Our comparative evaluation shows that all clients receive
updates from other clients within the timespan of seconds,
even when tens of clients are editing hundreds of shared
objects in a single document. This makes it suitable for on-
line, interactive and collaborative applications. Compared
to operation-based middleware [26, 29], OWebSync scales
better to tens of concurrent clients on a single document
and is especially better in operating in and recovering from
offline situations, even with silent network failure.

This paper is structured as follows. Section 2 provides two
motivating case studies and then provides the rationale and
more background on synchronization mechanisms such as
CRDTs. Section 3 describes the generic, reusable JSON-based
data types of OWebSync. Section 4 presents the deployment
and runtime architecture of OWebSync. Section 5 compares
and evaluates performance in online and offline situations.
We discuss related work in Section 6 and then we conclude.

2 Motivation, Background and Approach
This section further explains the motivation of both the
goal and approach of the OWebSync middleware. First we
present two industrial case studies of online software ser-
vices for both mobile employees and customers that often
encounter long term offline situations. We then motivate
our approach of state-based CRDTs with Merkle-trees and
provide background information on Operational Transforma-
tion, Conflict-free Replicated Data Types and Merkle-trees.

1A try-out demo application on the middleware is available on an anony-
mous website (http://owebsync.cloudapp.net). One can open multiple
Chrome browsers as concurrent clients. No personal identifiable infor-
mation is gathered. No cookies are used.

Case studies. We started from two industrial case studies
from our applied research projects for the motivation, re-
quirements analysis, and evaluation of the OWebSync mid-
dleware. The first case study is an online software service
from eWorkforce. eWorkforce is a company that provides
technicians to install network devices for different telecom
operators at their customers’ premises. The second company
is eDesigners, who offers a web-based design environment
for graphical templates that are applied to mass customer
communication. This section will explain both case studies.

eWorkforce has two kinds of employees that use the online
software service: the helpdesk operators at the office and
the technicians on the road. The helpdesk operators accept
customer calls, plan technical intervention jobs and assign
them to a technician. The technicians can check their work
plan on a mobile device and go from customer to customer.
Theywant to see the details of the next job wherever they are,
and need to be able to indicate which materials they used for
a particular job. Since they are always on the road, a stable
internet connection is not always available. Moreover, they
often work in offline modus when they work in basements
to install hardware. Booking all used materials as they are
used is crucial for correct billing afterwards.

eDesigners offers a customer-facing multi-tenant web ser-
vice to create, edit and apply graphical templates for mass
communication based on the customer’s company style. Tem-
plates can be edited by multiple users at the same time, even
when they are offline. When two users edit the same docu-
ment, a conflict occurs when the versions need to be merged.
Edits that are independent of each other should both be ap-
plied to the template. For example, one edit can change the
color of an object, another edit the size. When two users edit
the same property of the same object, only one value can
be saved. This should be resolved automatically as to not
interrupt the user.

Background, principles and approach. Next to the moti-
vating case studies for our overall goal of OWebSync, we
now describe our motivation and rationale of the approach.
Therefore we first discuss the advantages and problems of
state-of-the-art techniques such as Operational Transforma-
tion, operation-based CRDTs and state-based CRDTs.
Operational Transformation (OT). Operational Transfor-

mation [6] is a technique that is often used to synchronize
concurrent edits on a shared document. For example, two
clients can edit the text ‘ABC’ concurrently, where one client
inserts ‘*’ at position 1, and another client deletes the char-
acter at position 1. The former results in ‘A*BC’, the latter in
‘AC’. To achieve the correct state (‘A*C’), the first client needs
to transform the incoming operation of the other client to
a deletion at position 2. This means the operation needs to
be transformed to the current local state. The problem is
that the transformation of the incoming operations of other

2

http://owebsync.cloudapp.net


clients on the local current state can get very complex, and
that messages can get lost, or can arrive in the wrong order.
Conflict-free Replicated Data Types (CRDTs). CRDTs [15]

are data structures that guarantee eventual consistency with-
out the need for explicit conflict handling during synchro-
nization by the application or user. Conflict-free thus means
that conflicts are resolved automatically in a systematic and
deterministic way, such that the application or user doesn’t
have to deal with conflicts. There are two kinds of CRDTs:
operation-based (Commutative Replicated Data Types) and
state-based (Convergent Replicated Data Types).
Commutative Replicated Data Types (CmRDTs). CmRDTs

make use of operations to reach consistency, just like Opera-
tional Transformation (OT). But the operations in CmRDTs
are commutative and can be applied in any order. This way,
there is no central server needed to apply a transformation
on the operations. As with OT, CmRDTs need a reliable mes-
sage broadcast channel so that every message reaches every
replica exactly once in the correct causal order [14].
Convergent Replicated Data Types (CvRDTs). CvRDTs are

based on the state of the data type. Updates are propagated
to other replicas by sending the whole state and merging the
two CvRDTs. For this merge operation, there is a monotonic
join semi-lattice defined over the states of a CvRDT. This
means that there is a partial order defined over the possi-
ble states, and that there is a least-upper-bound operation
between two states. The least-upper-bound is the smallest
state that is larger or equal to both states according to the
partial order. To merge two states, the least-upper-bound
is computed and the result is the new state. CvRDTs don’t
require anything from the message channel, messages can
get lost without a problem, since the whole state is always
communicated. The main disadvantage is that the state can
get quite large, and needs to be communicated every time.
Delta-state CvRDTs. δ -CvRDTs [1] are a variant on state-

based CRDTs with the advantage that in some cases only part
of the state needs to be send for a correct synchronization.
But for this to work, one need to keep some sort of history
to find out which deltas need to be send and keep the causal
order between the deltas.
Merkle-trees.Merkle-trees [10] or hash-trees are used to

quickly compare two large data structures. Each item in a
data structure is hashed, and then the hashes are combined
in a hash on top, often in a binary way by combining two
hashes from a lower level into a single hash at the higher
level. This continues until the root of the tree is created with
the top-level hash. Two data structures can now be compared
starting from the two top-level hashes. If the root hashes
match, the data structures are equal. Otherwise, the tree
can be descended using the mismatching hashes to find the
mismatching items.
To limit the overhead of messages with state exchanges

between clients and server, we adopt Merkle-trees in the data
structure to find the items that need to be synchronized. This

data structure is discussed in Section 3. Together with other
architectural performance tactics and implementation-level
optimizations we can achieve fluent interactive synchroniza-
tion. This is discussed in Section 4.

3 The OWebSync Data Model: Convergent
replicated data types with Merkle-trees

In this section we describe the conceptual data model of
OWebSync that web applications will need to use to ensure
synchronization by the middleware. The data model is a
Convergent Replicated Data Type (CvRDT) for the efficient
replication of JSON data structures, and applies Merkle-trees
to quickly find data changes.

The CvRDT consist of two other types of CvRDTs: a Last-
Write-Wins Register (LWWRegister) [15] and an Observed-
Removed Map (ORMap) [15] extended with a Merkle-tree.
The LWWRegister is used to store values, such as strings,
numbers and booleans, in the leaves of the tree. The ORMap
is a recursive data structure that represents a map that can
contain other ORMaps or LWWRegisters.
Last-Write-Wins register (LWWRegister). This data struc-

ture contains exactly one value (string, number or boolean)
together with a timestamp of the last change of the value.
The data structure supports three operations: reading the
value, updating the value and merging a LWWRegister with
another one. Each update operation also updates the times-
tamp. The merging operation will always result in the value
and timestamp of the latest update. The other value is lost.
This conflict resolution strategy essentially boils down to a
simple last-write-wins strategy.

Observed-Removed Map (ORMap). The Observed-Removed
Map is typically implemented using an Observed-Removed
Set (ORSet) [15] which contains tuples with a key, a value
and an identifier. An ORSet is constructed as in [15] with
two grow-only sets. A grow-only set is also a CvRDT rep-
resenting a set to which one can only add items. Such a set
can easily be merged with other grow-only sets by simply
creating a union. The ORSet contains a grow-only set for
the added items (observed set) and a grow-only set for the
removed items (removed set). Figure 1 presents the class
diagram of the CRDTs that are used to represent the JSON
datatype. This diagram also includes the internal CRDTs on
which an ORMap is based. More specifically, ORMap extends
ORSet, which extends a Two-Phase Set (2P-Set) [15]. The
2P-Set contains two Grow-Only Sets (G-Set).
We add an extra hash to the tuples in the ORMap to con-

struct the Merkle-tree. When the child is a LWWRegister,
the hash is simply the MD5-sum [13] of the value of that
register. When the child is another ORMap, the hash of it is
the combined hash of the hashes of all the children of that
ORMap. This way, when one value in a register changes, all
the hashes of the parents will also change, so that a change
can be detected by only comparing the root hash.

3



 timestamp
 value

LWWRegister

 observed : G-Set<id, hash, key, value>
 removed : G-Set<id>

ORMap

 observed : G-Set<id, value>
 removed : G-Set<id>

OR-Set

 observed : G-Set<value>
 removed : G-Set<value>

2P-Set

 items : Set<value>

G-Set

Powered By�Visual Paradigm Community Edition

Figure 1. Class diagram of the CRDTs in OWebSync.

This data structure supports four operations: reading the
value of a key, removing the value behind a key, updating
the value of a key and merging the ORMap with another one.
The read operation will be executed recursively to return
a complete JSON object of the whole sub-tree behind the
provided key when the child is also an ORMap, or will just
return a primitive value if the child is a register. The remove
operation will add the ID to the removed set. The update
operation will update the hashes. To join two ORMaps, the
union of the respective observed and removed set is taken.
Then, the hashes are compared to check for changes in the
children of the ORMap. When a mismatch is detected, the
join is executed recursively to traverse the whole Merkle-
tree below that key to detect all the changes. The conflict
resolution of the ORMap boils down to an add-wins resolu-
tion. Concurrent edits to different keys can be made without
a problem. Edits to the same key will be delegated to the
child CRDT (either another ORMap or a register).

Example. As an example, we illustrate the conceptual rep-
resentation of an application data object in the eDesigners
case study, as well as the resulting CRDTs in the OWebSync
data model. Figure 2 presents both the conceptual represen-
tation (Figure 2a) as well as two of the CRDTs (Figure 2b).

The latter represents the internal structure of two CRDTs
that form the conceptual representation. First the key under
which the CRDT is stored in a key-value store is listed, then
the value of the CRDT. The first CRDT is an ORMap, the
second a LWWRegister. For conciseness, only the “top” and
the “left” properties are shown as children of “object36”. In
the real application all parameters as in Figure 2a are present.

Considerations and discussion. The current data model is of
course best suited for semi-structured data that is produced
and edited by concurrent users, like the data items in the case
studies: graphical templates, a set of tasks or used materials
for a task. This data model is less suited for applications like
online banking or pure text editing.

In the current version of OWebSync, we only support a
last-write wins strategy for updates in the leafs by authenti-
cated and authorized users. Other tactics are also possible,
for example a Multi-Value Register [15] where the applica-
tion can build its own strategy. That would however require
the implementation of application-specific resolution logic
in the client. For example, in the eDesigners case study, con-
current edits of the color of the same object could then result
in a merger of the two colors instead of overwriting the older
color with the newer color.

In the current OWebSync data model, the removed-set of
the ORMap keeps the IDs of all removed children eternally
(so-called tombstones). As a result, the size of an ORMap
can accumulate over time and performance will degrade.
With a modest usage of deletion this will not be a large
problem. Even when you delete a large sub-tree of several
levels deep, only the ID of the root of the sub-tree is kept in
the removed-set of the parent. All other data will be removed
and is not needed anymore for correct synchronization. At
the moment, OWebSync does not implement a solution for
cleaning up tombstones, but one strategy could be to simply
permanently remove all tombstones that are older than one
month. We then expect that a client will not be offline for
more than a month while performing concurrent edits. This
can be enforced by letting the access control token of that
user expire after a month of no usage.

Next to primitive values and maps, the JSON specification
contains also the concept of ordered lists. This is currently
not supported by OWebSync, and just like Swarm [28], we
focused on the initial key data structures: last-write-wins
registers and maps. Keeping a total numbered order, like lists
do, is rarely needed and we did not need them for our two
case studies. Unique IDs in a map are better suited in a dis-
tributed setting. In the case studies, the ordering of items in a
set was also based on application-specific properties such as
dates, times or other values, instead of an auto-incremented
number of a list. Note that CvRDTs for ordered lists do exist,
[15] and could be added in future work.

4 Web-based synchronization architecture
In this section we describe the deployment and execution
architecture of the OWebSync middleware as well as the
synchronization protocol. This middleware architecture is
key to support the data model and synchronization model de-
scribed in the previous section. We also elaborate on a set of
key performance optimization tactics to achieve continuous,
fluent synchronization for online interactive clients.

Overall architecture. The middleware architecture is de-
picted in Figure 3 and consists of loosely-coupled client and
server subsystems. First, the client-tier middleware API is
fully implemented in JavaScript and completely runs in the
browser without any need for add-ins or plugins. The server
is a light-weight process listening for incoming web requests

4



{
"drawings": {

"drawing1": {
"object36": {

"fill": "#f00",
"height": 50,
"left": 50,
"top": 100,
"type": "rect",
"width": 80

}
}

}
}

(a) Conceptual representation of a single data object in
the eDesigners case study.

* drawings.drawing1.object36:
uuid: 14f545820826f04c634b408d06b8ba
hash: 7319eae53558516daafac19183f2ee34
observed:

- uuid: 14f54581f8d5104c634b408d06b8ba
hash: 65bdd1b610f629e54d05459c00523a2b
key: "top"

- uuid: 14f54581ffa3404c634b408d06b8ba
hash: 67507876941285085484984080f5951e
key: "left"

...
removed:

* drawings.drawing1.object36.top:
uuid: 14f54581f8d5104c634b408d06b8ba
hash: 65bdd1b610f629e54d05459c00523a2b
value: "100"
timestamp: 789778800000

(b) Structure of two CRDTs that represent “object36” and the property “top”.

Figure 2. Datastructure of the eDesigners case study.

Figure 3. Overall architecture of the OWebSync middleware

and storing all shared data. The server is only responsible
for data synchronization and does not run application logic.
However, access control on the data is also supported and
enforced at the server. Both the clients and server have a key-
value store to make data persistent on disk. The many clients
and server communicate using only web-based HTTP traf-
fic and web sockets. All communication messages between
client and server are sent and received using asynchronous
workers inside the client and server subsystems. We first
further elaborate on the client-tier subsystem with the pub-
lic middleware API for applications, and then describe the
client-server communication protocol for synchronization
in detail.

Client-tier middleware and API. The public program-
ming API of the middleware is located completely at the

client-tier. Web applications are developed as client-side
JavaScript applications that use the following API:

• GET(path): Returns a JavaScript Object or primitive
value for a given path.

• LISTEN(path, callback): Similar to a GET, but every
time the value changes, the callback is executed.

• SET(path, value): Create or update a value at a given
path.

The OWebSync middleware is loaded as a JavaScript library
in the client and the middleware is then available in the
global scope of the web page. One can then load data and
edit data using typical JavaScript paths. An example from
the eDesigners case study:
let d1 = await OWebSync.get("drawings.drawing1");
d1.object36.color = "#f00";
OWebSync.set("drawings.drawing1", d1);

Synchronization protocol. The synchronization protocol
between client and server consists of three key messages,
that the client can send to the server and vice versa:

1. GET(path, hash): the receiver returns the CRDT at a
given path if the hash is different from its own CRDT
at the given path.

2. PUSH (path, CRDT): the sender sends the CRDT data
structure at a given path and the receiver will merge
it at the given path.

3. REMOVE(path, uuid): removes the CRDT at a given
path if the unique identifier (uuid) of the value ismatch-
ing the given uuid. As such, a newer value with a dif-
ferent uuid will not be deleted.

5



The protocol is initiated by a client, which will traverse the
Merkle-tree of the CRDTs. The synchronization starts with
the highest CRDT in the tree. The client will send a GET
message to the server with the given path and hash value
of the CRDT. If the server concludes that the hash of the
path matches the client’s hash, the synchronization stops.
All data is consistent at that time.

If the hash does not match, the server returns a PUSH
messagewith the CRDT that is located at the PATH requested
by the client. The client has to merge the new CRDT with
the CRDT at its requested location. This merger process at
the client might detect conflicting children in the tree by
comparing the hashes. The client will then PUSH that child
to the server with the CRDT of the client. The server then
needs to merge this CRDT. If a child does not exist yet, an
empty child is created and a GET message is sent.

The process continues by traversing the tree and exchang-
ing PUSH and GET messages until the leaf of the tree is
reached. The CRDT in this leaf is a register and can bemerged
immediately. All parents of this leaf are now updated such
that finally the top-level hash of client and server match. If
the top-level hashes do not match, other updates have been
done in the meantime, and the process is repeated.
If during a merger process, a child seems to be removed

at one side, but not at the other side, a REMOVE message
is sent to the other party so that it can remove that value
and add the ID to the removed set of the correct ORMap.
Alternatively, this additional third message type of REMOVE
could be avoided if a PUSH of the parent would be sent
instead. However, the push of a parent with many children
would cause a serious overhead compared to a REMOVE
message with only a path and uuid.

Client Server

6: []

5: [PUSH "drawings.drawing1.object36.color"]

4: [PUSH "drawings.drawing1.object36"]

3: [PUSH "drawings.drawing1"]

2: [PUSH "drawings"]

1: [GET "drawings"]

Figure 4. Synchronization protocol when the client has
made an update. With every PUSH message, the respective
CRDT is send. E.g. for message 4, the first CRDT in Figure 2b
is send.

Figure 4 shows an example for the eDesigners case study
where the client has changed the color of an object. If the
client had made multiple changes, e.g. he also changed the
height, the start of the synchronization protocol would be
the same, except that the height will also be included in
message five.

Performance optimization tactics. Themain optimization
tactic to achieve fluent synchronization for interactive appli-
cations is the reduction of network traffic by theMerkle-trees.
However, there are additional tactics needed to further im-
prove synchronization time. The protocol discussed above
leads to many messages between clients and server. To re-
duce the chattiness and overhead of the synchronization
protocol between the many clients and server, different opti-
mization tactics are applied by the client and the server.
Message batching. In the basic protocol explained above,

all messages are sent to the other party as soon as a mismatch
of a hash in the Merkle-tree is detected. This leads to lots of
small messages (GET, PUSH, and REMOVE) being sent out,
and as a consequence, a lot of messages are coming in while
still doing the first synchronization. This results in a lot of
duplicated messages and doing a lot of duplicated work on
subtrees, since the root hash will only be up-to-date when
the bottom of tree is correctly synchronized, and not when
another synchronization round is already busy somewhere
halfway in the tree. To solve this problem, all messages are
grouped in a list and are sent out in batch after a full pass
of a whole level of the tree has occurred. At the other side,
the messages are processed one by one, and all resulting
messages are again grouped in a list, and then send out after
the incoming batch was fully iterated. If no further messages
are resulting from the processing of a batch, an empty list
is sent to the other party. This ends the synchronization. As
a result, a lot less messages are sent between a client and
server, and only one synchronization per client is occurring
at the same time, resulting in no duplicated messages and
no duplicated work on subtrees.
Parallel processing of message batches. Message batching

eliminated the parallel processing of many small messages
that could lead to a lot of duplicated work on subtrees. How-
ever, because it processes the messages in a batch one by one,
there is no more parallel processing at all and the synchro-
nization time increases significantly. To solve this problem,
the messages in one batch are processed in parallel.

5 Performance evaluation
The performance evaluation will focus on situations where
all clients are continuously online, as well as on situations
where the network is interrupted. For online situations, we
are especially interested in the time it takes to distribute and
apply an update to all other clients that are editing the same
data. For the offline situation we are especially interested in

6



how long it takes for all clients to get back in sync with each
other after the network disruption.
The performance evaluation in this paper is performed

using the eDesigners case study, as this scenario has the
largest set of shared data and objects between users. The
eWorkforce case study has less shared data with less con-
current updates as technicians typically work on their own
data island and the data contains less objects with less fre-
quent changes. To compare performance, we implemented
the eDesigners case study three times on three representative
JavaScript technologies for web-based data synchronization:
our OWebSync platform, which uses state-based CRDTs with
Merkle-trees, Yjs [29] which uses operation-based CRDTs,
and ShareDB [26] which makes use of Operational Trans-
formation. Both Yjs (773 Github stars) and ShareDB (1964
Github stars) are widely-used open source technologies that
are available on GitHub.

Benchmark setup. Both the clients and the server are de-
ployed as separate Docker containers on a set of VMs in
our OpenStack private cloud. A VM has 4 GB of RAM and
4 vCPUs and can hold up to 3 client containers. A client
container contains a browser which loads the client-side
OWebSync middleware from the server. The middleware
server is deployed on a separate VM. The monitoring server
that captures all performance data is also deployed on a
separate VM. Pumba [24] is used to artificially increase the
latency between the containers to an average of 100 ms with
50 ms jitter which resembles the latency of a bad 4G network.
To have a fair comparison, all three technologies (OWebSync,
Yjs and ShareDB) use web sockets with identical time-outs
(10 seconds) to detect silent network failure.

Our evaluation contains 36 benchmarks: 6 benchmarks
to be executed by each of the 3 technologies, in both a con-
tinuous online setting as well as in a disconnected situation.
These 6 benchmarks vary in number of clients and data size:
8, 16, or 24 clients are performing continuous concurrent
updates on 100 or 1000 objects in a single shared document.
Each client performs a random write on a shared object ev-
ery second. We thus use at most 24 clients, which are editing
the same document concurrently. In comparison, Google
Docs (the most popular collaborative editing system today)
supports a maximum of 100 concurrent users according to
Google [21] itself. But in practice, latency starts to increase
significantly when the number of users exceeds 10 [3]. Our
performance results show the same problem for the other
web-based synchronization middleware in our comparison.

In our performance evaluation, one iteration of a bench-
mark takes about 11 minutes. The first three minutes are
used to populate the database, to perform the initial syn-
chronization, and to execute a minute of warm-up. Then
we measure the performance of 8 minutes of continuous
updates. Finally, we wait until all updates are synchronized
with a maximum of 15 minutes.

To ensure stability and consistency of the benchmark re-
sults on our private cloud, we first validated the performance
results by repeating the benchmark 100 times. This resulted
in about 13 hours of recorded data to validate consistency of
the performance metrics. In order to execute all 36 bench-
marks for this paper, we reduced the number of iterations to
10. This showed the same consistency and stability of the per-
formance results. The 10 iterations take in total 110 minutes
and provide us with 80 minutes of data2 for each benchmark
(initialization time and warm up period excluded) in which
each client makes one update every second.

Performance of continuous online updates. The follow-
ing performance measurements quantify the statistical divi-
sion of the time it takes to synchronize a single update to all
other clients in the case of a continuous online situation.

First of all, Yjs failed to synchronize all updates within the
15 minute waiting time for the benchmarks with 24 clients,
as well as for the benchmark with 16 clients and 1000 objects.
The success rate of the actually synchronized updates was
between 13% and 37%. ShareDB and OWebSync did not fail
to synchronize all updates.
The synchronization times of the succeeded updates are

illustrated in Figure 5 and Table 1. Figure 5 contains the box-
plots of all update times in the 10 iterations of each of the 18
benchmarks in the online setting. In order to compare results
of the same order of magnitude, as well as results in different
orders of magnitude, we opted for a logarithmic Y axis. Ta-
ble 1 contains the synchronization times (aggregated for all
10 iterations of a benchmark) and their standard deviation
over the 10 iterations. The presented results start from the
50th percentile (i.e.half of the succeeded updates are synchro-
nized within the given seconds) to 100% (i.e. all succeeded
updates are synchronized within the given seconds).
Analysis of the results. For the benchmark with 8 clients

and 100 objects, both Yjs and ShareDB synchronize the up-
dates faster than OWebSync. 99.9% is below 0.75 seconds.
OWebSync needs about 2.56 seconds for synchronizing the
99.9th percentile, and 2.68 for synchronizing 100% of the
updates. This is when Yjs and ShareDB first start to strug-
gle. 100% synchronization requires respectively 22.58 and
103.24 seconds, but also includes a huge standard deviation
to achieve this. For OWebSync this deviation on the results is
much less (0.11). For the benchmark with 24 clients and 1000
objects OWebSync becomes the fastest with a maximum of
only 6.21 seconds for the time to synchronize all updates. Yjs
and ShareDB require tens of seconds for the 50th percentile
and even hundreds of seconds for the 90th percentile.

We can conclude that the synchronization time of OWeb-
Sync only slightly increases when scaling up to 1000 ob-
jects and 24 clients. However, the update times for Yjs and

2The raw logs of all 36 benchmarks, and the graphical analysis in boxplots
of each iteration, are available on an anonymous Azure storage account for
verification: https://owebsyncdata.blob.core.windows.net/logs/data.zip

7

https://owebsyncdata.blob.core.windows.net/logs/data.zip


100 1000
Objects

0.1

1

10

100

1000 s
Synchronization time Clients = 8

100 1000
Objects

Clients = 16

100 1000
Objects

Clients = 24

OWebSync
Yjs
ShareDB

Figure 5. Aggregated boxplots containing the times to achieve full synchronization to all clients. Each boxplot contains all 10
iterations for each of the 18 benchmarks in the fully online situation. In order to compare technologies that have results of the
same order of magnitude, as well as results in different orders of magnitude, we opted for a logarithmic Y axis.

100 objects 1000 objects

8 clients 16 clients 24 clients 8 clients 16 clients 24 clients

OWebsync
50% 1.75 ± 0.01 1.91 ± 0.02 1.98 ± 0.03 1.92 ± 0.04 2.23 ± 0.24 2.39 ± 0.08
90% 2.08 ± 0.01 2.32 ± 0.04 2.48 ± 0.07 2.56 ± 0.20 3.07 ± 0.50 3.31 ± 0.17
95% 2.16 ± 0.01 2.48 ± 0.09 2.67 ± 0.10 2.92 ± 0.35 3.46 ± 0.63 3.70 ± 0.24
99% 2.33 ± 0.03 3.09 ± 0.61 3.17 ± 0.27 3.97 ± 0.64 4.44 ± 1.08 4.60 ± 0.47

99.9% 2.56 ± 0.06 3.88 ± 1.28 3.88 ± 0.54 5.02 ± 0.71 5.50 ± 1.38 5.64 ± 0.75
100% 2.68 ± 0.11 4.22 ± 1.37 4.30 ± 0.59 5.34 ± 0.79 5.97 ± 1.39 6.21 ± 1.03

Y js
50% 0.35 ± 0.01 0.57 ± 0.01 31.01 ± 6.51 3.38 ± 1.88 50.43 ± 12.19 74.89 ± 26.98
90% 0.44 ± 0.02 0.85 ± 0.02 82.39 ± 12.14 18.83 ± 10.76 116.32 ± 27.81 227.64 ± 114.30
95% 0.49 ± 0.02 0.97 ± 0.03 96.75 ± 10.82 37.39 ± 24.96 148.59 ± 35.30 302.73 ± 103.52
99% 0.58 ± 0.03 1.30 ± 0.06 157.74 ± 42.73 71.61 ± 52.21 291.72 ± 105.64 509.70 ± 218.52

99.9% 0.75 ± 0.08 2.18 ± 0.37 327.62 ± 24.81 89.80 ± 63.14 595.14 ± 255.30 641.43 ± 245.58
100% 22.58 ± 65.20 214.64 ± 108.46 386.38 ± 38.35 93.11 ± 64.98 773.57 ± 257.50 706.56 ± 219.51

ShareDB
50% 0.47 ± 0.00 0.49 ± 0.00 0.50 ± 0.00 0.74 ± 0.01 1.70 ± 0.04 13.81 ± 3.45
90% 0.54 ± 0.00 0.56 ± 0.00 0.57 ± 0.00 0.96 ± 0.02 2.83 ± 0.04 46.04 ± 55.22
95% 0.56 ± 0.00 0.58 ± 0.01 0.59 ± 0.01 1.01 ± 0.01 3.81 ± 0.09 105.18 ± 155.23
99% 0.58 ± 0.01 0.62 ± 0.02 0.64 ± 0.01 1.10 ± 0.01 6.92 ± 0.35 129.86 ± 155.56

99.9% 0.62 ± 0.03 0.78 ± 0.12 37.94 ± 34.66 1.22 ± 0.03 13.07 ± 1.16 199.65 ± 160.70
100% 103.24 ± 122.04 222.05 ± 101.09 295.25 ± 69.22 1.31 ± 0.06 20.88 ± 5.17 297.72 ± 166.33

Table 1. Synchronization times and their standard deviation for the succeeded updates in all 10 iterations of each benchmark,
starting from the 50% percentile (i.e. half of the updates are fully synchronized after the given seconds) to 100% (i.e. all
succeeded updates are fully synchronized after the given seconds).

8



shareDB increase significantly when going beyond 8 clients
or when synchronizing 1000 objects. For the Yjs and ShareDB
benchmarks with 24 clients and 1000 objects, the results start
to increase and fluctuate more and more as these technolo-
gies start to struggle with the scale of the benchmark.
All the OWebSync benchmarks show more consistent

results during their 10 iterations. This is clearly visible in
Table 1 with the distribution of the synchronization times of
OWebSync. The standard deviation on the synchronization
times is clearly limited in all benchmarks. This applies to all
percentiles. For the OWebSync benchmark with 24 clients
and 1000 objects, the separate boxplots of the 10 iterations
actually show consistent medians, third quarters, maxima
and outliers (Figure 6).
The trade-off for this scalable, fluent synchronization, is

that OWebSync has the largest network usage of all tested
technologies (Figure 7). The usage of Merkle-trees reduced
the network usage with about a factor 8 in the worst case.
Even in the benchmark with 24 clients and 1000 objects, the
used bandwidth is less then 800 kbit/s per client. This is
much less than the available bandwidth which is on average
27 Mbit/s on a mobile network in the US [27]. In this same
benchmark, the server consumes about 20 Mbit/s, which is
acceptable for a typical data center.

Tests
0

3

6

9 s
Synchronization time

Figure 6. Boxplots of 10 iterations of the OWebSync bench-
mark with 1000 objects and 24 clients.

100 1000
Objects

0

200

400

600

800 kbit/s

Network usage Clients = 8

100 1000
Objects

Clients = 16

100 1000
Objects

Clients = 24

OWebSync
Yjs
ShareDB

Figure 7. Network usage per client for each benchmark.

Interpretation and discussion. For interactive web applica-
tions, usability guidelines [12] state that a direct interaction
should occur within 0.1 seconds. Remote response times
should typically be 1 to 2 seconds in average. 3 to 5 seconds
is the absolute maximum before users are annoyed. The user
is often leaving the web application after 10 seconds of wait-
ing time. We start from these numbers to assess the update
propagation time between users in a collaborative interactive
online application with continuous updates. We are inter-
ested in the waiting time for a user to receive an update from
another online user. These numbers should be achieved not
only for the average user (the mean synchronization time)
but also for the 99th percentile (i.e. most of the users [4]).
Table 1 shows that the average result for the OWebSync

benchmark with 24 clients and 1000 objects is around 2 to
2.5 seconds. The average synchronization time of the 99th
percentile is at the border line of annoyance with 4.60s. Yjs
and ShareDB operate with sub-second synchronization times
when sharing 100 objects between 8 writers. When the num-
ber of objects and writers increases, the synchronization
time raises to tens of seconds for the 50th percentile, and
hundreds of seconds for the 99th percentile. This is in line
with the observations of [3] for Google Docs, which uses the
same approach as ShareDB (Operational Transformation).

Performance in disconnected scenarios. We now present
the performance analysis for the case when the network
between one client and the server goes down. In these bench-
marks, we have an analogous benchmark setup. However,
during the 11 minute execution, we start dropping all mes-
sages after 3 minutes for 1 minute using Pumba [24]. Again,
Yjs only succeeds in synchronizing 10% to 23% of the updates
for the benchmarks with 24 clients.

Analysis of the results. In summary, the resynchronization
time of OWebSync in case of network failure is between 1
and 4 seconds, which is acceptable for interactive online web
applications. The boxplots of these benchmarks (Figure 8 and
Table 2) show that OWebSync can synchronize all missed
updates faster than Yjs or ShareDB. These technologies need
tens or hundreds of seconds to process the updates. This is
due to their operation-based nature. Yjs and ShareDB need
to replay all missed operations on the client that was offline.
OWebSync only needs to merge the new state, which it does
in exactly the same way as if the failure never happened.
Timeline analysis of the benchmarks. The overall impact

on all clients is minimal as can be seen in the timeline graph
in Figure 9 for the benchmark with 8 clients and 100 objects.
This graph shows the total synchronization time on the Y-
axis, for each update done at a given moment during the
benchmark timeline (X-axis). The first two minutes show
consistent synchronization times for all three technologies.
In this benchmark, OWebSync is the slowest as was the
case for the online situation. After those two minutes, the
network of one client is disrupted. This is 3 minutes after

9



100 1000
Objects

0.1

1

10

100

1000 s
Synchronization time Clients = 8

100 1000
Objects

Clients = 16

100 1000
Objects

Clients = 24

OWebSync
Yjs
ShareDB

Figure 8. Boxplots of the time it takes for an update done during the failure scenario to be received by all clients.

100 objects 1000 objects

8 clients 16 clients 24 clients 8 clients 16 clients 24 clients

OWebsync
50% 1.02 ± 0.14 0.96 ± 0.16 0.96 ± 0.19 2.04 ± 0.24 2.33 ± 0.41 2.60 ± 0.43
90% 1.40 ± 0.35 1.00 ± 0.17 0.99 ± 0.19 2.54 ± 0.29 2.45 ± 0.42 2.81 ± 0.44
95% 1.71 ± 0.15 1.57 ± 0.37 1.15 ± 0.34 2.76 ± 0.31 3.16 ± 0.44 2.83 ± 0.42
99% 1.82 ± 0.23 1.78 ± 0.27 1.83 ± 0.37 2.88 ± 0.25 3.32 ± 0.38 3.43 ± 0.58

99.9% 1.86 ± 0.21 1.86 ± 0.22 1.86 ± 0.39 2.99 ± 0.28 3.32 ± 0.37 3.50 ± 0.53
100% 1.86 ± 0.21 1.86 ± 0.22 1.86 ± 0.40 3.00 ± 0.30 3.32 ± 0.37 3.56 ± 0.53

Y js
50% 10.82 ± 8.97 41.31 ± 32.28 20.67 ± 2.69 26.49 ± 1.91 31.80 ± 9.46 33.97 ± 3.73
90% 43.79 ± 49.14 82.55 ± 61.10 41.42 ± 7.67 46.47 ± 2.55 52.82 ± 14.72 61.92 ± 7.60
95% 47.28 ± 50.06 131.57 ± 71.05 58.36 ± 11.57 77.61 ± 50.76 112.43 ± 113.54 115.17 ± 123.67
99% 89.76 ± 72.86 178.91 ± 90.47 134.72 ± 66.76 154.39 ± 46.72 414.49 ± 250.11 442.50 ± 184.87

99.9% 99.74 ± 80.70 211.78 ± 86.39 246.19 ± 55.59 185.87 ± 79.13 645.16 ± 291.23 738.65 ± 183.96
100% 102.93 ± 83.96 242.26 ± 76.40 266.94 ± 58.20 201.46 ± 108.08 674.31 ± 294.22 771.66 ± 186.74

ShareDB
50% 1.56 ± 0.12 3.70 ± 0.34 4.75 ± 0.25 16.00 ± 0.89 30.20 ± 1.19 30.05 ± 0.74
90% 20.73 ± 14.40 6.32 ± 0.49 8.27 ± 0.35 65.99 ± 6.81 53.28 ± 1.19 51.65 ± 1.11
95% 31.57 ± 8.80 17.18 ± 10.11 8.70 ± 0.35 67.67 ± 6.79 167.03 ± 135.97 319.09 ± 8.77
99% 31.77 ± 8.77 26.08 ± 8.55 23.36 ± 9.45 68.98 ± 6.79 169.51 ± 136.06 321.68 ± 8.77

99.9% 50.80 ± 41.58 31.01 ± 9.91 36.69 ± 22.56 69.30 ± 6.83 171.14 ± 135.16 322.22 ± 8.77
100% 67.41 ± 75.16 82.51 ± 76.05 117.07 ± 64.98 69.33 ± 6.83 171.98 ± 134.54 322.27 ± 8.77

Table 2. Synchronization times for missed updates during the network disruption, starting from 50th percentile (i.e. half of
the missed updates are fully synchronized between all clients after the given seconds) to 100% (i.e. all missed updates are fully
synchronized after the given seconds). The synchronization time does not include offline time.

10



0 1 2 3 4 5 6 7 8 min
Timeline of the test

0

20

40

60

80

100 s
Synchronization time

OWebSync
Yjs
ShareDB

(a) The total time to synchronize updates, including the time offline.
The peak at 120 seconds is due to the 1 minute failure.

0 1 2 3 4 5 6 7 8 min
Timeline of the test

0

20

40

60

80

100 s
Synchronization time

OWebSync
Yjs
ShareDB

(b) The time to synchronize updates after the network failure, thus
without the time during the failure taken into account.

Figure 9. Evolution of the time to synchronize updates in the benchmark with 8 clients, 100 objects and network failure.

0 1 2 3 4 5 6 7 8 min
Timeline of the test

0

100

200

300

400

500

600 s

Synchronization time

OWebSync
Yjs
ShareDB

(a) The total time it takes to synchronize updates, including the
time offline. The peak at 120 seconds is due to the 1 minute failure.

0 1 2 3 4 5 6 7 8 min
Timeline of the test

0

100

200

300

400

500

600 s

Synchronization time

OWebSync
Yjs
ShareDB

(b) The time it takes to synchronize updates, not including the time
offline.

Figure 10. Evolution of the time to synchronize updates for the benchmark with 24 clients, 1000 objects and network failure.

the start of the benchmark, but the first minute is used as
warm-up period and is not shown in the graphs. One minute
later, the network is repaired and the synchronization times
drop as full synchronization is possible again. OWebSync
quickly returns to the same performance as before the failure.
ShareDB also achieves the original performance again, but
takes a bit more time to achieve this. Yjs on the other hand
will block the synchronization of new updates to first syn-
chronize missed updates from during the failure, and only
then resumes normal synchronization. In the benchmark
with 24 clients and 1000 objects (Figure 10), OWebSync still
quickly returns to the same performance as before the fail-
ure. However, ShareDB now takes much longer to achieve
this. Yjs clients can not longer handle the combination of
ongoing updates and delayed updates, and start failing to
synchronize after 4 minutes due to client side load.

OWebSync is only slightly influenced by a network disrup-
tion, as can be seen in Figure 9b and Figure 10b which show
the resynchronization times without the offline time during

the failure. This means that for an update done 20 seconds
before the end of the failure, and which got synchronized 22
seconds later, the resynchronization time is 2 seconds.
For OWebSync, this graph stays mostly flat for updates

done during the failure. For the benchmark with 8 clients,
it even drops to values lower than during normal online
synchronization, because synchronization after a failure is
faster. This is due to the fact that the synchronization starts
immediately after the client notices that the failure is over,
instead of waiting until the previous synchronization is done
like in the normal scenario. The other technologies, Yjs and
ShareDB, have an increased synchronization time for updates
done during the failure. In the benchmark with 24 clients
and 1000 objects, these operation-based technologies also
still perform slower for updates done after the failure.

Summary. Our evaluation shows that the operation-based
approaches work well in continuous online situations with
a limited number of users. However, when network disrup-
tions occur, or when the number of users scales up, these

11



technologies can not achieve acceptable performance and
need tens or hundreds of seconds to achieve synchronization.
The state-based approach of OWebSync can achieve much
better performance in the order of seconds, which is still
acceptable for interactive web applications.

6 Related work
The related work consists of three types of work: 1) concepts
and techniques such as CRDTs and Operational Transfor-
mation, 2) distributed data systems such as Dynamo and
Cassandra, as well as 3) synchronization frameworks for
clients such as PouchDB, Swarm.js, Yjs and ShareDB. The
concepts and techniques were discussed in Section 2. In this
section we focus on the distributed data systems and on
synchronization frameworks.
Distributed data systems and NoSQL. With the venue of

NoSQL systems, a lot of new storage solutions have appeared
that offer eventual consistency between different distributed
nodes, within or even across data centers. Their focus is
often to provide availability of read and write operations
over strong consistency in the context of network partitions.
These are typical systems of which the replicated data copies
are stored on multiple servers across or within data centers,
and that support concurrent updates on the different data
copies, even when the nodes are disconnected.

Dynamo [4] is a highly-available key-value store at Ama-
zon. The focus is to support high-availability of write oper-
ations. Applications should always be able to write on the
local copy. In case conflicts occur between different versions
(in the case of network partitions), the reconciliation occurs
when the data item is read later. Using syntactic reconcil-
iation, Dynamo can resolve the conflict between a newer
version and an older version if a newer version is clearly
derived from the older version. In case concurrent writes
occurred, Dynamo relies on the application to merge the
two versions (semantic reconciliation). Dynamo can thus
not merge two versions of complex objects that are stored
as values in the key-value store.

Based on the original Dynamo paper, a lot of other open-
source NoSQL systems have been developed for structured
or semi-structured data. Cassandra [9, 19] supports fine-
grained versioning of cells in a wide-column store. It there-
fore uses timestamps for each row-column cell, and adopts a
last-write-wins strategy to join two cells. CouchDB [20] and
MongoDB [22] focus on semi-structured document storage,
typically in a JSON format. CouchDB offers coarse-grained
versioning per document and stores multiple versions of
the document. Applications need to resolve the conflicts
between the versions. Moreover, it also does not support
fine-grained conflict detection or merging within two JSON
documents. Riak [25] is a server-side key-value store like
Amazon Dynamo, but also supports more fine-grained data
structures such as state-based CRDTs (registers, counters,

sets and maps). It does not support client-side data replicas,
Merkle-trees for synchronization, or long-term offline usage.
Antidote [18] is a research project to develop a geo-replicated
database over world-wide data centers. It adopts operation-
based commutative CRDTs for highly-available transactions.
It supports partial replication but assumes continuous online
connections as the default operational situation.

Client-tier JavaScript-libraries for synchronization. A lot of
JavaScript frameworks have appeared to enable synchroniza-
tion between web browsers and server-side data systems.
PouchDB [23] is a client-side JS library that can replicate
data from and to a CouchDB server. Local data copies are
stored in the browser for offline usage. PouchDB only sup-
ports conflict detection and resolution at the coarse-grained
level of a whole document. ShareDB [26] is a client-server
framework to synchronize JSON documents and adopts Op-
erational Transformation as synchronization technique be-
tween the different local copies. ShareDB can thus not be
used in extended offline situations. In case of short network
disruptions it can store the operations on the data in mem-
ory and resend them when the connection restores. The of-
fline operations are lost when the browser session is closed.
Yjs [11, 29] is a JavaScript Framework for synchronizing
structured data and supports maps, arrays, XML and text
documents. All data types also use operation-based CRDTs
for synchronization. Swarm.js [28] is a JavaScript client li-
brary for the Swarm database and uses a Replicated Object
Notation (RON). RON is based on operation-based CRDTs
with a partially ordered log for synchronization after offline
situations. It currently only supports sets and basic values
like string and int. Swarm.js also focuses on peer-to-peer
architectures like chat applications and decentralized CDNs,
while OWebSync focuses on client-server line-of-business
applications.

7 Conclusion
This paper presented a web middleware that supports the
fluent synchronization of both online and offline clients that
are concurrently editing shared data sets.

Our OWebSync middleware implements a data model that
combines state-based CRDTs with specific enhancements
based on Merkle-trees. Due to the enhancements in our data
model and performance tactics in our supportingmiddleware
architecture, we were able to achieve fluent and fine-grained
synchronization for online interactive web applications with
continuous concurrent updates.
Our comparative evaluation shows that the operation-

based approaches can not achieve acceptable performance
in case of network disruptions or larger scale settings, and
need tens or hundreds of seconds to achieve synchronization.
The state-based approach of OWebSync can achieve better
performance in the order of seconds, which is still acceptable
for interactive web applications.

12



References
[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2015. Effi-

cient State-Based CRDTs by Delta-Mutation. Springer International
Publishing, 62–76. https://doi.org/10.1007/978-3-319-26850-7_5

[2] Tim Bray. 2014. The javascript object notation (json) data interchange
format. RFC 7158. IETF. https://www.rfc-editor.org/rfc/rfc7158.txt

[3] Quang-Vinh Dang and Claudia-Lavinia Ignat. 2016. Performance of
real-time collaborative editors at large scale: User perspective. In Inter-
net of People Workshop, 2016 IFIP Networking Conference (Proceedings
of 2016 IFIP Networking Conference, Networking 2016 and Workshops).
IFIP, Vienna, Austria, 548–553. https://doi.org/10.1109/IFIPNetworking.
2016.7497258

[4] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: ama-
zon’s highly available key-value store. In ACM SIGOPS operating sys-
tems review, Vol. 41(6). ACM, ACM, New York, NY, USA, 205–220.
https://doi.org/10.1145/1294261.1294281

[5] Jacob Eberhardt, Dominik Ernst, and David Bermbach. 2016. SMAC:
State Management for Geo-Distributed Containers. Technical Report.
Technische Universitaet Berlin.

[6] C. A. Ellis and S. J. Gibbs. 1989. Concurrency Control in Groupware
Systems. SIGMOD Rec. 18, 2 (June 1989), 399–407. https://doi.org/10.
1145/66926.66963

[7] Martin Kleppmann and Alastair R Beresford. 2017. A Conflict-free
Replicated JSON Datatype. IEEE Transactions on Parallel and Dis-
tributed Systems 28, 10 (2017), 2733–2746.

[8] Santosh Kumawat and Ajay Khunteta. 2010. A survey on operational
transformation algorithms: Challenges, issues and achievements. In-
ternational Journal of Computer Applications 3, 12 (July 2010), 30–38.
https://doi.org/10.5120/787-1115

[9] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decen-
tralized structured storage system. ACM SIGOPS Operating Systems
Review 44, 2 (2010), 35–40.

[10] Ralf Merkle. 1982. Method of providing digital signatures. (1982). US
patent 4309569. The Board Of Trustees Of The Leland Stanford Junior
University.

[11] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2015.
Yjs: A Framework for Near Real-Time P2P Shared Editing on Arbitrary
Data Types. In Engineering the Web in the Big Data Era. Springer

International Publishing, Cham, 675–678.
[12] Jakob Nielsen. 2012. Response time limits. (2012).
[13] Ronald Rivest. 1992. The MD5 Message-Digest Algorithm. RFC 1321.

https://www.rfc-editor.org/rfc/rfc1321.txt
[14] Marc Shapiro, Nuno Perguiça, Carlos Baquero, and Marek Zawirski.

2011. Conflict-Free Replicated Data Types. In SSS 2011 - 13th Inter-
national Symposium Stabilization, Safety, and Security of Distributed
Systems (Lecture Notes in Computer Science), Xavier Défago, Franck
Petit, and Vincent Villain (Eds.), Vol. 6976. Springer Berlin Heidelberg,
Berlin, Heidelberg, 386–400.

[15] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. A comprehensive study of Convergent and Commutative Repli-
cated Data Types. Research Report RR-7506. Inria – Centre Paris-
Rocquencourt ; INRIA. 50 pages. https://hal.inria.fr/inria-00555588

[16] Chengzheng Sun and Clarence Ellis. 1998. Operational transformation
in real-time group editors: issues, algorithms, and achievements. In Pro-
ceedings of the 1998 ACM conference on Computer supported cooperative
work (CSCW ’98). ACM, New York, NY, USA, 59–68.

[17] Albert van der Linde, Pedro Fouto, João Leitão, Nuno Preguiça, Santi-
ago Castiñeira, and Annette Bieniusa. 2017. Legion: Enriching Internet
Services with Peer-to-Peer Interactions. In Proceedings of the 26th In-
ternational Conference on World Wide Web (WWW ’17). International
World Wide Web Conferences Steering Committee, Republic and Can-
ton of Geneva, Switzerland, 283–292. https://doi.org/10.1145/3038912.
3052673

[18] 2014. Antidote. http://syncfree.github.io/antidote. (2014).
[19] 2009. Apache Cassandra. https://cassandra.apache.org. (2009).
[20] 2005. CouchDB. https://couchdb.apache.org. (2005).
[21] 2018. Google Docs. https://support.google.com/docs/answer/2494822.

(2018).
[22] 2009. MongoDB. https://www.mongodb.com/. (2009).
[23] 2013. PouchDB. https://pouchdb.com. (2013).
[24] 2016. Pumba. https://github.com/alexei-led/pumba. (2016).
[25] 2010. Riak. http://docs.basho.com/riak/kv. (2010).
[26] 2013. ShareDB. https://github.com/share/sharedb. (2013).
[27] 2018. Speedtest.net. http://www.speedtest.net/reports/united-states/,

last accessed on 20/09/18. (2018).
[28] 2013. Swarm.js. https://github.com/gritzko/swarm. (2013).
[29] 2014. Yjs. https://github.com/y-js/yjs. (2014).

13

https://doi.org/10.1007/978-3-319-26850-7_5
https://www.rfc-editor.org/rfc/rfc7158.txt
https://doi.org/10.1109/IFIPNetworking.2016.7497258
https://doi.org/10.1109/IFIPNetworking.2016.7497258
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/66926.66963
https://doi.org/10.1145/66926.66963
https://doi.org/10.5120/787-1115
https://www.rfc-editor.org/rfc/rfc1321.txt
https://hal.inria.fr/inria-00555588
https://doi.org/10.1145/3038912.3052673
https://doi.org/10.1145/3038912.3052673
http://www.speedtest.net/reports/united-states/

	Abstract
	1 Introduction
	2 Motivation, Background and Approach
	3 The OWebSync Data Model: Convergent replicated data types with Merkle-trees
	4 Web-based synchronization architecture
	5 Performance evaluation
	6 Related work
	7 Conclusion
	References

