
OWebSync: A Web Middleware with State-Based
CRDTs for Interactive Groupware Supporting

Seamless Synchronization of Distributed Web Clients
Anonymous Author(s)
Submission Id: 16

Abstract
Many enterprise software services are adopting a fully web-
based architecture for both internal line-of-business applica-
tions and for online customer-facing applications. Although
wireless connections are becoming more ubiquitous and
faster, mobile employees and customers are often offline
due to expected or unexpected network disruptions. Never-
theless, continuous operation of the software is expected.

This paper presents OWebSync: a web-based middleware
for interactive groupware with fast resynchronization of
offline clients and continuous, interactive synchronization
for online clients. OWebSync implements a fine-grained data
synchronization model and leverages state-based Conflict-
free Replicated Data Types to automatically resolve conflicts.
It uses several tactics to achieve the required interactive
performance: Merkle-trees embedded in the tree-structured
data, virtual Merkle-tree levels, and message batching.

Our comparative evaluation with existing operation-based
and delta-state-basedmiddleware solutions shows that OWeb-
Sync is especially better in operating in and recovering from
offline settings and network disruptions. OWebSync scales
better over time, as it does not store version vectors or other
meta-data for all clients that were present in the system at
some point.

1 Introduction
Web applications are the default architecture for many online
software services, both for internal line-of-business applica-
tions such as CRM, billing, and HR; as well as for customer-
facing software service delivery. Browser-based service de-
livery fully abstracts the heterogeneity of the clients, solving
the deployment and maintenance problems that come with
native applications. Nevertheless, native applications are still
used when rich and highly interactive GUIs are required, or
when applications must function offline for a long time. The
former reason is disappearing as HTML5 and JavaScript are
becoming more powerful. The latter reason should be disap-
pearing too with the arrival of WiFi, 4G and 5G ubiquitous
wireless networks. In reality, connectivity is often missing
for minutes to hours. Mobile employees can be working in
cellars or tunnels, and customers sometimes want to use a
web-based service on an airplane.

Interactive groupware applications, such as collaborative
web applicationswith concurrent edits on shared data, should

offer prompt synchronization with interactive performance
when online and must keep functioning when offline. The
research of Nielsen on usability engineering [28] states that
remote interactions should take only 1-2 seconds to keep the
user experience seamless. Users are annoyed after a 5 sec-
ond waiting period and 10 seconds is the absolute maximum
before users leave the web application. This paper focuses
on prompt and seamless synchronization when clients were
offline due to network disruptions, while maintaining inter-
active synchronization in the online setting.
Several client-side frameworks for synchronization of

semi-structured data exist. They support fine-grained and
concurrent updates on local copies of shared data and op-
erate conflict-free in online and offline situations. However,
there is no generic, fully web-based middleware solution
that can be used by interactive web applications to:

1. achieve continuous synchronization for online clients
and prompt resynchronization for offline clients,

2. scale to tens (20-30) of online clients that concurrently
edit a shared document with interactive performance,

3. tolerate hundreds of clients over time without inflating
and polluting the data with versioning metadata.

None of the client-side frameworks support all of the above.
State-of-the-art data-synchronization frameworks are either
operation-based, state-based or delta-state-based. Operation-
based approaches distribute the updates as operations to
all replicas. Operational Transformation, used in Google
Docs [50], is a popular operation-based technique for real-
time synchronization in web applications, but it is not re-
silient against message loss or out-of-order messages. It
requires a central server transforming the operations for
other clients to deal with concurrent changes. Commutative
Replicated Data Types [30, 36], used in SwiftCloud [31, 39],
Yjs [26, 27, 59] and Automerge [19, 44], are also operation-
based. Again, updates must be propagated, as operations, to
all clients using a reliable, exactly-once, message channel.
However, no transformation is needed because concurrent
operations are commutative. State-based Convergent Repli-
cated Data Types [36] are resilient against message loss, but
have often been considered as problematic since the full
state has to be transferred between all replicas each time.
However, it is used for background synchronization between
data centers, e.g. in Riak [55]. Merkle Search Trees [4] are
proposed as a solution to the high bandwidth usage. It uses

1



Anon. Submission Id: 16

Merkle-trees [25] to replicate a basic key-value store like in
Dynamo [12]. The solution works in large systems with low
rates of updates for asynchronous background synchroniza-
tion between backend servers; it is not suited for interactive
groupware. Delta-state-based Conflict-free Replicated Data
Types [1, 38], used in Legion [37, 51], need less of themessage
channel than the operation-based approaches. However, they
use vector clocks to calculate delta-updates, which require
one entry per client per object in the server-side metadata.
This does not integrate well with the dynamic nature of the
web, where it is often uncertain if a client will ever connect
to a server again.

In this paper, we present OWebSync1, a generic web mid-
dleware for browser-based applications and interactive group-
ware. It supports offline usage with fast resynchronization, as
well as continuous and interactive synchronization between
online clients. OWebSync provides a generic, reusable data
type, based on JSON [8], that web application developers can
leverage to model their application data. One can nest sev-
eral map structures into each other to build a complex tree-
structured data model. These data types support fine-grained
and conflict-free synchronization by leveraging state-based
Conflict-free Replicated Data Types (CRDTs). OWebSync
solves the scalability issue that comes with operation-based
and delta-state-based approaches, where server-side meta-
data per client will grow linearly over time with the number
of clients present in the system at some point. Compared to
state-based approaches, it reduces the required bandwidth
by combining several tactics such as Merkle-trees embedded
in the tree-structured data, virtual Merkle-tree levels, and
message batching. These improvements make state-based
CRDTs suitable for online, interactive groupware.
This paper is structured as follows. Section 2 provides

two motivating case studies and then provides the ratio-
nale and more background on synchronization mechanisms
such as CRDTs. Section 3 describes the generic, reusable
JSON-based data types of OWebSync. Section 4 presents the
deployment and runtime synchronization architecture. Sec-
tion 5 compares and evaluates performance in online and
offline situations using OWebSync and other state-of-the-art
synchronization frameworks. We discuss related work in
Section 6 and then we conclude.

2 Motivation, Background and Approach
This section explains themotivation of the goal and approach
of the OWebSync middleware. First, we present two case
studies of online software services for mobile employees
and customers that often encounter offline settings due to

1A try-out demo application on the middleware is available on an anony-
mous website (http://owebsync.cloudapp.net). One can open multiple
Chrome browsers as concurrent clients. Make sure to use different chrome-
profiles for each client: e.g. your normal chrome profile and an incognito
window. No personally identifiable information is gathered.

expected or unexpected network disruptions. We then pro-
vide background information on Operational Transforma-
tion, Conflict-free Replicated Data Types and Merkle-trees,
and motivate our approach using state-based CRDTs.

2.1 Case studies
The motivation and requirements have emerged from two
case studies from our applied research projects with industry,
that have also been used for the evaluation of the middleware.
The first case study is an online software service from eWork-
force, a company that provides technicians to install network
devices for different telecom operators at their customers’
premises. The second company is eDesigners, which offers a
web-based design environment for graphical templates that
are applied to mass customer communication.
eWorkforce. eWorkforce has two kinds of employees that

use the online software service: the help desk operators at
the office and the technicians on the road. The help desk
operators accept customer calls, plan technical intervention
jobs and assign them to a technician. The technicians can
check their work plan on a mobile device and go from cus-
tomer to customer. They want to see the details of their next
job wherever they are and must be able to indicate which ma-
terials they used for a job. Since they are always on the road,
a stable internet connection is not always available. More-
over, they often work in offline mode when they work in
basements to install hardware. Writing off all used materials
is crucial for correct billing and inventory afterwards.
This case study requires support for long term offline

usage, with quick synchronization when coming online, es-
pecially for last-minute changes to the work plan of the
technicians. The help desk software must be operative at all
times, even without connection to the central database, as
customers can call for support and schedule interventions.
eDesigners. The company eDesigners offers a customer-

facing multi-tenant web application to create, edit and apply
graphical templates for mass communication based on the
customer’s company style. Templates can be edited by mul-
tiple users at the same time, even when offline. When two
users edit the same document, a conflict occurs, and the
versions need to be merged. Edits that are independent of
each other should both be applied to the template, e.g. one
edit changes the color of an object, another edit changes the
size. When two users edit the same property of the same
object, only one value can be saved. This should be resolved
automatically as to not interrupt the user.
This case study requires that the application is always

available, updates must always be possible, even offline when
working on an airplane. When coming back online, the up-
dates should be synchronized promptly without requiring
the user or the application to manually resolve conflicts.
When working online, the performance should be interac-
tive, especially when two users are working on the same
template next to each other.

2

http://owebsync.cloudapp.net


OWebSync: A Web Middleware with State-Based CRDTs for Interactive Groupware

2.2 Background, principles and approach
The previous section described the overall goal of OWebSync.
This section now describes our motivation and rationale for
our approach. Therefore, we first discuss the advantages and
problems of state-of-the-art techniques such as Operational
Transformation and Conflict-free Replicated Data Types.

Operational Transformation. OT [14] is a technique that
is often used to synchronize concurrent edits on a shared
document. It works by sending the operations to the other
replicas. The operations are not necessarily commutative,
which means they cannot be applied immediately on other
replicas. A concurrent edit might conflict with another op-
eration. Therefore, a central server is used to transform the
operations for the different replicas so that the resulting
operations maintain the original semantics. The problem is
that the transformation of the incoming operations of other
clients on their local state can get very complex. Messages
can also get lost or can arrive in the wrong order. Hence, OT
is not resilient against message loss in offline situations [22].

Conflict-free Replicated Data Types. CRDTs [35, 36] are
data structures designed for replication that guarantee even-
tual consistency without explicit coordination with other
replicas. Conflict-free means that conflicts are resolved auto-
matically in a systematic and deterministic way, such that
the application or user does not have to deal with conflicts
manually. There are two kinds of CRDTs: operation-based
or Commutative Replicated Data Types (CmRDT) and state-
based or Convergent Replicated Data Types (CvRDT).
Commutative Replicated Data Types. CmRDTs [35] make

use of operations to reach consistency, just like OT. Concur-
rent operations in CmRDTs must be commutative and can
be applied in any order. This way, there is no central server
necessary to apply a transformation on the operations. As
with OT, CmRDTs need a reliable message broadcast channel
so that every message reaches every replica exactly-once.
Causally ordered delivery is required in some cases.

Convergent Replicated Data Types. CvRDTs [35] are based
on the state of the data type. Updates are propagated to other
replicas by sending the whole state and merging the two
CvRDTs. For this merge operation, there is a monotonic join
semi-lattice defined. This means that there is a partial order
defined over the possible states and a least-upper-bound
operation between two states. The least-upper-bound is the
smallest state that is larger or equal to both states according
to the partial order. To merge two states, the least-upper-
bound is computed, which will be the new state. CvRDTs
require little from the message channel. Messages can get
lost or arrive out-of-order without a problem since the whole
state is always sent. The main disadvantage is that the state
can get large, and needs to be communicated every time.

Delta-state CvRDTs. δ -CvRDTs [1, 2] are a variant of state-
based CRDTs with the advantage that in some cases only

part of the state (a delta) needs to be sent for correct synchro-
nization. When a client performs an update, a new delta is
generated which reflects the update. Each client keeps a list
of deltas and remembers which clients have already acknowl-
edged a delta. As soon as all clients have acknowledged a
delta, the delta can be discarded because the update is now
reflected in the state of all clients. If a client was offline and
has missed too many deltas, then the full state must be sent,
just like with normal state-based CRDTs.
δ -CRDTs have some problems when using them in web

applications. Browser-based clients come and go with a large
churn rate and it is often unclear if a client will come back
online in the future (e.g. browser cache cleared). Keeping
extra metadata for all those clients, to be able to synchronize
only the required deltas, can result in a large storage or
memory overhead to keep track of them at the server. One
can always discard the metadata for clients that were offline
and send the full state if they do come back online eventually.
But this is of course not efficient when the state is large and
the client already had most of the updates.
A variant of δ -CRDTs, called ∆-CRDTs [38], is proposed

as solution to this problem. ∆-CRDTs are comparable to δ -
CRDTs, but instead of keeping track of the clients at the
server, it includes extra metadata about concurrent versions
of all clients in the data model, as vector clocks, to calculate
the deltas dynamically. This solves the problem of keep-
ing track of the deltas for clients at the server, but it still
needs client identifiers and version numbers inside the vec-
tor clocks for each object, and each client that made a change.
Another approach to optimize δ -CRDTs is using join de-

compositions [15, 16]. This approach does not extend CRDTs
with additional metadata that needs to be garbage collected.
Instead, it can efficiently calculate a minimal delta to syn-
chronize. While this improves the network usage compared
to normal δ -CRDTs, it still requires clients to keep track of
their neighbors. When there is no such data available, e.g.
after a network partition, it needs to fall back to a state-based
approach. However, it only requires sending the full state
in a single direction, compared to bidirectionally in normal
state-based CRDTs. A digest-driven approach is also sup-
ported, which will send a smaller digest of the actual state.
However, for many CRDTs, such digest does not exist and
for large, nested data, this digest would still be very large.

Merkle-trees. Merkle-trees [25] or hash-trees are used to
quickly compare two large data structures. First, each item
in a data structure is hashed. Then the hashes are combined
in a hash on top, often in a binary way, by combining two
hashes from a lower level into a single hash at the higher
level. This continues until the root of the tree is created.
Two data structures can now be compared starting from the
two top-level hashes. If the top-level hashes match, the data
structures are equal. Otherwise, the tree can be descended
using the mismatching hashes to find the mismatching items.

3



Anon. Submission Id: 16

Approach. OWebSync uses state-based CRDTs, which re-
quire little from the message channel compared to operation-
based approaches. No state about other clients or client-based
versioning metadata needs to be stored, unlike delta-state
approaches. And even after long offline periods, the missed
updates can be computed and synchronized seamlessly. To
limit the overhead of full state exchanges between clients
and server, we adopt Merkle-trees in the data structure to
find the items that need to be synchronized efficiently. This
data structure and its building blocks are discussed in Section
3. Together with other architectural performance tactics, we
can achieve prompt synchronization in interactive group-
ware. This is discussed in Section 4.

3 The OWebSync Data Model
This section describes the conceptual data model of OWeb-
Sync that web application developers will need to use to
ensure synchronization by the middleware. The data model
is a CvRDT for the efficient replication of JSON data struc-
tures and applies Merkle-trees internally to quickly find data
changes. The CvRDT consist of two types: a Last-Write-Wins
Register (LWWRegister) [36] and an Observed-Removed
Map (ORMap) [36] extended with a Merkle-tree. The LWW-
Register is used to store values, such as strings, numbers, and
booleans, in the leaves of the tree. The ORMap is a recursive
data structure that represents a map containing a mapping
from strings to other ORMaps or LWWRegisters.
Last-Write-Wins Register. This data structure contains ex-

actly one value (string, number or boolean) together with a
timestamp of the last change of the value. The data structure
supports three operations: reading the value, updating the
value and merging a LWWRegister with another one. Each
update operation also updates the timestamp. The times-
tamps are provided by the clients and we do not consider
malicious clients. The merge operation will always result in
the value and timestamp of the latest update. This timestamp
is only used when a conflict occurred, i.e. one or more clients
have updated the value concurrently. This conflict resolution
strategy boils down to a simple last-write-wins strategy.
Observed-Removed Map. The Observed-Removed Map is

implemented using an Observed-Removed Set (ORSet) as de-
scribed by Shapiro et al. [36]. Internally, the ORSet contains
two sets: the observed set and the removed set; to keep track
of the items that are added to the set and which items are
removed. A unique ID (UUID [24]) is added to each item to
make it possible to add a removed item back to the set since
it will have a different ID when added again. The ORMap
contains tuples with a value and an ID, just like an ORSet,
and an extra key. We add an extra hash to the tuples in the
ORMap to construct the Merkle-tree. When the child is a
LWWRegister, the hash is the MD5-sum [33] of the value of
that register. When the child is another ORMap, the hash of
it is the combined hash of the hashes of all the children of

that ORMap. This way, when one value in a register changes,
all the hashes of the parents will also change so that a change
can be detected by only comparing the top-level hash.

This data structure supports four operations: reading the
value of a key, removing the value of a key, updating the
value of a key and merging the ORMap with another one.
The read operation will be executed recursively to return a
complete JSON object of the whole sub-tree when the child
is also an ORMap, or will just return a primitive value if the
child is a register. When the remove operation removes an
item, only the ID is kept internally and the whole sub-tree
of the removed item is discarded. The update operation will
update the value and the hashes. To merge two ORMaps, the
union of the respective observed and removed set is taken,
just like in a regular ORSet. Then, the hashes of the Merkle-
tree are compared to check for changes in the children of the
ORMap. When a mismatch is detected, the merge is executed
recursively to traverse the Merkle-tree below that key to
detect all the changes. The conflict resolution of the ORMap
boils down to an add-wins resolution, i.e. a concurrent add
and remove operation will result in the item being present in
the set since each add will get a new identifier. Concurrent
edits to different keys can be made without a problem. Edits
to the same key will be delegated to the child CRDT: either
another ORMap or a LWWRegister.

Example. As an example, we illustrate the conceptual rep-
resentation of an application data object in the eDesigners
case study, as well as the resulting CRDTs in the OWebSync
data model. Figure 1 presents both the conceptual represen-
tation (Figure 1a) as well as two of the CRDTs (Figure 1b).
The latter represents the internal structure of two CRDTs
that form the conceptual representation. First, the key under
which the CRDT is stored in a key-value store is listed, then
the internal value of the CRDT. The first CRDT is an ORMap,
the second a LWWRegister. For conciseness, only the top
and the left properties are shown as children of object36.
The application developer only needs to know about the
conceptual JSON representation, the middleware will auto-
matically translate this data model and its operations to the
underlying CRDTs and maintain the Merkle-tree.

Considerations and discussion.The datamodel is best suited
for semi-structured data that is produced and edited by con-
current users. Any data that can be modeled in a tree-like
structure such as JSON, that can tolerate eventual consis-
tency and that does not require constraints between the data,
can use OWebSync for the synchronization. Examples are
the data items in the case studies: graphical templates, a
set of tasks or used materials for a task. This data model is
less suited for applications such as online banking which
requires constraints such as: “your balance can never be less
than zero”. Text-editing is also not a great fit, because there
is not much structure in the data. If you would see text as a
list of characters, it would result in a tree with one top-level
node and one level with many child nodes: the characters.

4



OWebSync: A Web Middleware with State-Based CRDTs for Interactive Groupware

{
"drawings": {

"drawing1": {
"object36": {

"fill": "#f00",
"height": 50,
"left": 50,
"top": 100,
"type": "rect",
"width": 80

}
}

}
}

(a) Conceptual representation of a single data object.

* drawings.drawing1.object36:
uuid: 0a2f7bc2-129f-11e9-ab14-d663bd873d93
hash: 7319eae53558516daafac19183f2ee34
observed:

- uuid: 23c1259a-129f-11e9-ab14-d663bd873d93
hash: 65bdd1b610f629e54d05459c00523a2b
key: "top"

- uuid: 0eac2a3a-546f-11e9-8647-d663bd873d93
hash: 67507876941285085484984080f5951e
key: "left"

...
removed:

* drawings.drawing1.object36.top:
uuid: 23c1259a-129f-11e9-ab14-d663bd873d93
hash: 65bdd1b610f629e54d05459c00523a2b
value: "100"
timestamp: 789778800000

(b) Structure of two CRDTs that represent object36 and the property top.

Figure 1. Datastructure of the eDesigners case study.

There is no benefit in using a Merkle-tree here. OWebSync
also expects that no clients are malicious.
In the current OWebSync data model, the ORMap keeps

the IDs of all removed children eternally, so-called tomb-
stones. As a result, the size of an ORMap can accumulate over
time and performance will degrade. With a modest usage of
deletion, this will not be a problem. Even when you remove
a large sub-tree of several levels deep, only the ID of the root
of the sub-tree is kept in the parent. One strategy to clean up
tombstones could be to permanently remove all tombstones
older than one month. We then expect that a client will not
be offline for more than a month while performing concur-
rent edits. This can be enforced by automatically logging out
the user after a month of no usage.

Another kind of conflict occurs when assigning different
types of CRDTs to the same path. In this case, the merge-
operation of the defined CRDTs cannot be used to resolve
the conflict. This is solved by posing an order on the possible
CRDTs, e.g. LWWRegister < ORMap. This means that when
such a conflict occurs, the ORMap is selected as actual value,
while the LWWRegister is discarded.

Another conflict is a concurrent remove and update of a
child CRDT. The CRDT proposed here maintains a remove-
wins semantic. This means that updates done to children are
discarded when the parent is removed concurrently.

Beside primitive values and maps, the JSON specification
also contains ordered lists. This is currently not supported by
OWebSync, we focused on the initial key data structures: last-
write-wins registers and maps. Keeping a total numbered
order, as lists do, is rarely needed: unique IDs in a map are
better suited in a distributed setting. In the case studies, the
ordering of items in a set was based on application-specific
properties such as dates, times or other values, instead of
an auto-incremented number of a list. However, CvRDTs for
ordered lists exist [34, 36] and could be added in future work.

Adding new kinds of CRDTs to the data model is straight-
forward. An existing CvRDT can be used as is, except for an
extra hash to be part of the Merkle-tree. For a CRDT that
represents a leaf value (e.g. a Multi-Value Register [36]), the
hash is simply the hash of that value. For CRDTs that can
contain other values (e.g. a list [34]), the hash must combine
the hashes of all the children.

4 Web-based synchronization architecture
This section describes the deployment and execution archi-
tecture of the OWebSync middleware as well as the syn-
chronization protocol. This middleware architecture is key
to support the data model and synchronization model de-
scribed in the previous section. We also elaborate on a set of
key performance optimization tactics to achieve continuous,
prompt synchronization for online interactive clients.

Overall architecture. The middleware architecture is de-
picted in Figure 2 and consists of a client and a server subsys-
tem. The client-tier middleware API is fully implemented in
JavaScript and runs completely in the browser, without add-
ins or plugins. The server is a light-weight process, which
listens to incoming web requests and stores all shared data.
The server is only responsible for data synchronization, it
does not run application logic. Both client and server have
a key-value store to persist data, and they communicate us-
ing only web-based HTTP traffic and WebSockets [18]. All
communication messages are sent and received inside the
client and server subsystems using asynchronous workers.
We first elaborate on the client-tier subsystem with the pub-
lic middleware API for applications, and then describe the
client-server synchronization protocol.

Client-tier middleware and API. The public program-
ming API of the middleware is located completely at the

5



Anon. Submission Id: 16

Browser
Main thread
«HTML5»

Application

API
«JS»

Middleware

Worker thread

«JS»
Worker

«component»
IndexedDB

SYNC

Server

«JS»
Server

«component»
K/V-store

Figure 2. Overall architecture of the OWebSync middleware

client-tier, and web applications are developed as client-side
JavaScript applications that use the following API:

• GET(path): returns a JavaScript object or primitive
value for a given path.

• LISTEN(path, callback): similar to GET, but every
time the value changes, the callback is executed.

• SET(path, value): set or update a value at a given
path.

• REMOVE(path): remove the value or sub-tree at the
given path.

The OWebSync middleware is loaded as a JavaScript library
in the client and the middleware is then available in the
global scope of the web page. One can then load and edit
data using typical JavaScript paths. An example from the
eDesigners case study:
let d1 = await OWebSync.get("drawings.drawing1");
d1.object36.color = "#f00";
OWebSync.set("drawings.drawing1", d1);

The difference between the levels of hierarchy is as follows.
The object at "drawings.drawing1" is fetched from disc
and is represented as a JavaScript object in memory. If there
would be other drawings (e.g. drawing2), they will not be
loaded. The access to "d1.object36.color" is just a plain
JavaScript object access and does not involve OWebSync.
For performance reasons, it is best to always scope to the
smallest possible object from the database, in this example
that would be:
OWebSync.set("drawings.drawing1.object36.color","#f00")

Synchronization protocol. The synchronization protocol
between client and server consists of three key messages
that the client can send to the server and vice versa:

• GET(path, hash): the receiver returns the CRDT at a
given path if the hash is different from its own CRDT
at the given path.

• PUSH(path, CRDT): the sender sends the CRDT data
structure at a given path and the receiver will merge
it at the given path.

• REMOVE(path, uuid): removes the CRDT at a given
path if the unique identifier (UUID) of the value is
matching the given UUID. As such, a newer value with
a different UUID will not be removed.

The protocol is initiated by a client, which will traverse the
Merkle-tree of the CRDTs. The synchronization starts with
the highest CRDT in the tree. The client will send a GET
message to the server with the given path and hash value
of the CRDT. If the server concludes that the hash of the
path matches the client’s hash, the synchronization stops.
All data is consistent at that time.

If the hash does not match, the server returns a PUSH
message with the CRDT that is located at the path requested
by the client. This does not include the child CRDTs, only the
metadata (key, UUID, and hash) of the immediate children.
The client must merge the new CRDT with the CRDT at its
requested path. Thismerger process at the clientmight detect
conflicting children in the tree by comparing the hashes. The
client will then PUSH the CRDTs of those conflicting children
to the server. The server then needs to merge those CRDTs.
If a child does not yet exist, an empty child is created and a
GET message is sent.

The process continues by traversing the tree and exchang-
ing PUSH and GET messages until the leaves of the tree are
reached. The CRDT in this leaf is a register and can bemerged
immediately. All parents of this leaf are now updated such
that finally the top-level hash of client and server match. If
the top-level hashes do not match, other updates have been
done in the meantime, and the process is repeated. Per PUSH
message that is sent, the process descends one level in the
Merkle-tree. The number of messages, and thus the length
of the synchronization protocol, is therefore limited to the
maximum depth of the Merkle-tree.
If during a merger process, a child seems to be removed

at one side, but not at the other side, a REMOVE message is
sent to the other party so that it can remove that value and
add the UUID to the removed set of the correct ORMap.
Alternatively, this additional third message type of REMOVE
could be avoided if a PUSH of the parent would be sent instead.
However, the push of a parent with many children would
cause a serious overhead compared to a REMOVE message
with only a path and a UUID.

Figure 3 shows an example of the eDesigners case study
where the client changed the color of an object. If the client
had made multiple changes, e.g. he also changed the height,
the start of the synchronization protocol would be the same,
except that the height will also be included in message five.

Performance optimization tactics. Themain optimization
tactic to achieve prompt synchronization for interactive
groupware is the reduction of network traffic by the Merkle-
trees. However, there are additional tactics needed to further
improve synchronization time. The protocol discussed above
leads to many messages between clients and the server. To

6



OWebSync: A Web Middleware with State-Based CRDTs for Interactive Groupware

Client Server1: [GET "drawings"]

2: [PUSH "drawings"]

3: [PUSH "drawings.drawing1"]

4: [PUSH "drawings.drawing1.object36"]

5: [PUSH "drawings.drawing1.object36.color"]

6: []

Figure 3. Synchronization protocol when the client made
an update. With every PUSHmessage, the respective CRDT is
sent. E.g. for message 4, the first CRDT in Figure 1b is sent.

reduce the chattiness and overhead of the synchronization
protocol between the many clients and the server, different
optimization tactics are applied by the client and the server.

Virtual Merkle-tree levels. When the number of child values
in an ORMap increases, all the metadata for those children
(key, UUID, and hash) needs to be sent each time during the
synchronization to check for changes. This leads to very high
network usage since it cannot make use of the Merkle-tree
efficiently. To solve this problem, we introduced extra, virtual,
levels in the Merkle-tree. Whenever an ORMap needs to be
transmitted which contains many children (i.e. hundreds),
instead an extra Merkle-tree level is sent. This extra level
combines themany children in groups of e.g. 10. This number
can be adapted to the total number of children. As a result,
10 times fewer hashes will be sent, combined with the key-
ranges the hashes belong to. The other party can verify the
hashes and determine which ones are changed and then push
the 10 children for which the combined hash did not match.
This improvement leads to a slight delay in synchronization
time since it adds one extra round-trip, but when only a small
part of the children is updated, it uses much less bandwidth
and reduces the computation time.
Message batching. In the basic protocol explained above,

all messages are sent to the other party as soon as a mismatch
of a hash in the Merkle-tree is detected. This leads to lots
of small messages (GET, PUSH, and REMOVE) being sent out,
and as a consequence, many messages are coming in while
still doing the first synchronization. This results in many
duplicated messages and doing a lot of duplicated work on
sub-trees since the top-level hash will only be up-to-date
when the bottom of the tree is correctly synchronized, and
not when another synchronization round is already busy
somewhere halfway in the tree. To solve this problem, all
messages are grouped in a list and are sent out in batch after
a full pass of a whole level of the tree has occurred. At the
other side, the messages are processed concurrently, and
all resulting messages are again grouped in a list, and are
only sent out after the incoming batch was fully iterated.

If no further messages are resulting from the processing of
a batch, an empty list is sent to the other party. This ends
the synchronization. As a result, fewer messages are sent
between a client and server, and only one synchronization
round per client is occurring at the same time, resulting in no
duplicated messages and no duplicated work on sub-trees.

5 Performance evaluation
The performance evaluation will focus on situations where
all clients are continuously online, as well as on situations
where the network is interrupted. For online situations, we
are especially interested in the time it takes to distribute and
apply an update to all other clients that are editing the same
data. For the offline situation, we are especially interested in
the time it takes for all clients to get back in sync with each
other after the network disruption, and in the time it takes
to restore normal interactive performance.
The performance evaluation in this paper is performed

using the eDesigners case study, as this scenario has the
largest set of shared data and objects between users. The
eWorkforce case study has fewer shared data with fewer
concurrent updates as technicians typically work on their
own data island and the data contains fewer objects with
less frequent changes. To compare performance, we imple-
mented the eDesigners case study 5 times on 5 representa-
tive JavaScript technologies for web-based data synchroniza-
tion: our OWebSync platform, which uses state-based CRDTs
with Merkle-trees, Yjs [59] and Automerge [44] which use
operation-based CRDTs, and ShareDB [56] which makes use
of OT. We used Legion [37] for testing delta-state CRDTs.
Both Yjs (1063 GitHub stars) and ShareDB (2681 GitHub
stars) are widely used open source technologies available on
GitHub. Automerge is the implementation of the JSON data
type of Kleppmann and Beresford [20]. Legion is not widely
used in production but is currently the only implementa-
tion of delta-state CRDTs in JavaScript to the best of our
knowledge. We did not evaluate Google Docs, which uses
OT, as it is text-based, and can not be used to synchronize
the JSON-documents used in the test. Instead, we opted for
ShareDB. We use Fabric.js [48] for the graphical interface.

Test setup. Both the clients and the server are deployed as
separate Docker containers on a set of VMs in the Azure [45]
public cloud. A VM has 4 vCPU cores and 8 GB of RAM
(Azure Standard A4 v2) and can hold up to 3 client containers.
A client container contains a browser that loads the client-
side middleware from the server. The middleware server is
deployed on a separate VM (Azure Standard F4s v2). The
monitoring server that captures all performance data is also
deployed on a separate VM. The Linux tc tool [3] is used
to artificially increase the latency between the containers
to an average of 60 ms with 10 ms jitter, which resembles
the latency of a 4G network in the US. Other countries are
pushing latencies down to 30 ms [53].

7



Anon. Submission Id: 16

Our evaluation contains three benchmarks: the first two
focusing on interactive performance with different configu-
rations, and the last on storage size over a longer time.

The first benchmark represents the continuous online sce-
nario where clients are making updates for 10 minutes and
stay online the whole time. The second benchmark is the
offline scenario where the network connection between the
clients and the server is disrupted during the test. In total,
we executed 60 tests for those first two benchmarks: 6 tests
to be executed by each of the 5 technologies, in both a con-
tinuous online setting as well as in a disconnected situation.
These 6 tests vary in the number of clients and data size:
8, 16, or 24 clients are performing continuous concurrent
updates on 100 or 1000 objects in a single shared data set.
One such object was shown in Figure 1a in Section 3 and
has 7 attributes. Each client edits one object, which leads to
two random writes, the x and y position, on a shared object
every second. In reality, a single update in the user-interface
can lead to several writes to the data store, e.g. updating a
gradient color would lead to 5 writes in Fabric.js [48]. We
use at most 24 clients, which are editing the same document
concurrently. In comparison, Google Docs, which is the most
popular collaborative editing system today, supports a maxi-
mum of 100 concurrent users according to Google itself [50].
But in practice, latency starts to increase significantly when
the number of users exceeds 10 [10]. Our performance results
show the same problem for ShareDB, which uses the same
technique. In our performance evaluation, one iteration of a
test takes 10 minutes. Before each test, the database is popu-
lated and the initial synchronization is performed. The first
minute is used to execute a warm-up. Then we measure the
performance of 9 minutes of continuous updates. To ensure
the stability and consistency of the test results, all tests are
repeated 10 times2.

The third and last benchmark is used to measure the total
size of the data set over a longer time (2 hours). Every 10
minutes, 5 new client browsers will start making changes.
After those 10 minutes, the browsers are shut down and
replaced by others. After 2 hours, about 60 browsers of clients
are introduced into the system. This benchmark simulates
the eDesigners case study over the course of a few years,
several employees and external consultants will have worked
on the template using different browsers on their devices
(desktop, laptop, tablet). In the meantime, they might have
cleared their browser cache, used an incognito session or
switched to a new device. This scenario is used to verify how
well the 5 frameworks will perform over time.

Performance of continuous online updates. The follow-
ing performance measurements quantify the statistical di-
vision of the time it takes to synchronize a single update

2Tables with the detailed performance results and the raw logs and data of
all 60 tests are available on an anonymous Azure storage account: https:
//owebsyncdata.blob.core.windows.net/logs/data.zip

to all other clients in the case of a continuous online situa-
tion. The synchronization times of the succeeded updates
are illustrated in Figure 4.
Analysis of the results. For the test with 8 clients and 100

objects, all operation-based approaches (ShareDB, Yjs, and
Automerge) synchronize the updates faster than the state-
based approaches (Legion and OWebSync). For these three
operation-based approaches, 99% is below 0.3 seconds. Le-
gion needs about 1.0 second for synchronizing the 99th per-
centile and OWebSync needs 1.3 seconds. The reason for this
is that Legion and OWebSync do not keep track of which
updates have been sent to which client. Hence, each time the
data is synchronized, a few extra round-trips are required
to calculate which updates are needed. ShareDB, Yjs, and
Automerge can just send the operations. On a faster network,
with less latency, both Legion and OWebSync will be able
to synchronize faster than in this test, since the round-trip
time will be less. But even with this high latency in this
benchmark, OWebSync performs within the guidelines of
1-2 seconds for interactive performance. These tests show
that state-based CRDTs, which are currently only used for
background synchronization between servers, can also be
used in interactive groupware. This improvement is due to
the use of Merkle-trees embedded in the data-structure, the
use of virtual Merkle-tree levels for large objects, and mes-
sage batching. For the test with 24 clients and 1000 objects,
ShareDB has raised to 7.7 seconds for the 99th percentile.
The server cannot keep up with transforming the incoming
operations. Since the operations in Yjs and Automerge are
commutative and do not need a transformation, the server
does not become a bottleneck here.
Network trade-off. The trade-off for this scalable, prompt

synchronization, is that OWebSync has a rather large net-
work usage compared to the other tested technologies (Fig-
ure 5). Only Automerge requires more bandwidth because it
stores the whole history and uses long text-based UUIDs as
client identifiers, compared to just integers in Legion. The us-
age of Merkle-trees reduced the network usage of OWebSync
with about a factor 8 in the worst case (1000 objects under
a single node in the tree), compared to normal state-based
CRDTs. Introducing extra, virtual, levels in the Merkle-tree
for nodes with many children lowered the bandwidth with
another factor 3. Even in the test with 24 clients and 1000 ob-
jects, the used bandwidth is only 360 kbit/s per client. This is
much less than the available bandwidth, which is on average
27 Mbit/s on a mobile network in the US [57]. The server
consumes about 8.7 Mbit/s, which is acceptable for a typical
data center. The data structure has an important effect on
the network usage. One might create a tree-structure with
few nodes which have many children. This will make the
Merkle-tree less useful since the metadata of all the children
needs to be exchanged to be able to determine which children
are updated. This can be seen in Figure 5 by comparing the
network usage of the tests with 100 objects to the tests with

8

https://owebsyncdata.blob.core.windows.net/logs/data.zip
https://owebsyncdata.blob.core.windows.net/logs/data.zip


OWebSync: A Web Middleware with State-Based CRDTs for Interactive Groupware

1

5

0.1

10 s
Synchronization time

8 clients

100 1000
Objects

16 clients

100 1000
Objects

24 clients24 clients

100 1000
Objects

ShareDB Yjs Automerge Legion OWebSync

Figure 4. Aggregated boxplots containing the times to achieve full synchronization to all clients. Each boxplot contains all 10
iterations for each of the 30 tests in the fully online situation. To compare technologies that have results of the same order of
magnitude, as well as results in different orders of magnitude, we opted for a logarithmic Y-axis.

100
200
300
400

0

500 kbit/s
Network usage

8 clients

100 1000
Objects

16 clients

100 1000
Objects

24 clients

100 1000
Objects

ShareDB Yjs Automerge Legion OWebSync

Figure 5. Network usage per client for each test. OWebSync
has a larger network usage when the number of children
under a single node increases.

1000 objects. The other possibility is that there are fewer chil-
dren per node, but with an increased depth of the tree. This
positively affects the network usage, as less metadata will
need to be exchanged. However, synchronizing the whole
tree will take more round-trips as there are more levels in
the tree to go through.

Interpretation and discussion. For interactive web applica-
tions and groupware, usability guidelines [28, 29] state that
remote response times should typically be 1 to 2 seconds on
average. 3 to 5 seconds is the absolute maximum before users
are annoyed. The user is often leaving the web application af-
ter 10 seconds of waiting time. We start from these numbers
to assess the update propagation time between users in a
collaborative interactive online application with continuous
updates. We are interested in the time for a user to receive
an update from another online user. These numbers should
be achieved not only for the average user (the mean synchro-
nization time) but also for the 99th percentile (i.e. most of
the users [12]). The 99th percentile for the synchronization
time for the OWebSync test with 24 clients and 1000 objects
is below 1.5 seconds. ShareDB operates with sub-second

synchronization times when sharing 100 objects between
8 writers. But when the number of objects and writers in-
creases, the synchronization time raises to 7.7 seconds for
the 99th percentile. This is in line with the observations of
Dang and Ignat [10] for Google Docs, which uses the same
approach as ShareDB (OT). The other technologies stay well
below 5 seconds in the online scenario and can be called
interactive.

Performance in disconnected scenarios. We now present
the performance analysis for the case when the network
between the clients and the server is disrupted. In these
tests, we have an analogous test setup. However, during the
10-minute execution, we start dropping all messages after 3
minutes for 1minute (shown at 2minutes in the graphs as the
first minute is used as a warm-up). This 1-minute network
disruption will lead to many conflicting operations, which
will automatically be resolved by the middleware. During the
disruption, there will be 1440 offline updates in the largest
experiment with 24 clients. A more extended offline period
will not change much for OWebSync since only the state
is kept and the same client moving the same object twice
will result in the same amount of state to be sent. Operation-
based approaches will take longer when the time increases
since they have to send all operations anyway.

We evaluate the time that is needed to achieve full bidirec-
tional synchronization of all concurrent updates on all clients
during the network disruption. We also evaluate the time
that is needed to restore normal interactive performance in
the online setting after the disruption.

Analysis of the results. The boxplots of these tests, shown in
Figure 6, show that OWebSync can synchronize all missed up-
dates faster than ShareDB, Yjs, Automerge, and Legion. Note
that at the median of the boxplots, only 50% of the missed
updates are synchronized. Only at the upper whisker, all of

9



Anon. Submission Id: 16

1

5
10

0.1

100 s
Resynchronization time

8 clients

100 1000
Objects

16 clients

100 1000
Objects

24 clients24 clients

100 1000
Objects

ShareDB Yjs Automerge Legion OWebSync

Figure 6. Boxplots of the time it takes for an update during the failure scenario to be received by all clients. The time before a
client notices the network connection is reestablished is not taken into account. Note that the median here means that only 50%
of all missed updates are synchronized to all clients. Only at the upper whisker, most of the missed updates are synchronized.

10

20

0

30 s
Synchronization time

1 2 3 4 5 6 7 80 9min
Timeline of the test

ShareDB Yjs Automerge Legion OWebSync

Figure 7. Mean time to synchronize updates after the net-
work disruption for the test with 24 clients, 1000 objects.

the missed updates are fully synchronized. Then, each user
is fully up-to-date with everything that was updated during
the network disruption. In the large scale scenario with 24
clients and 1000 updates, the time to synchronize all missed
updates in case of network failure is 3.5 seconds for the 99th
percentile for OWebSync, which is acceptable for interactive
web applications. The other technologies need more than
5 seconds to only synchronize half of the missed updates,
meaning that users will become annoyed. The operation-
based approaches need several tens of seconds to synchro-
nize all of the missed updates because they must replay all
missed operations on the clients that were offline. This is
due to their operation-based nature. OWebSync only needs
to merge the new state, which it does in the same way as
if the failure never happened. Legion could keep up with
OWebSync in the online scenario, but now we see that resyn-
chronization after network disruptions starts to take longer
when the scale of the test or the size of the data set increases.

Timeline analysis of the tests. The timelines in Figure 7
show the resynchronization times on the y-axis, without the
offline time during the network disruption, for each update
done at a givenmoment during the test timeline (x-axis). This

2.5

5

0

7.5 MB
Data size

10 2hours
Timeline of the test

ShareDB Yjs Automerge Legion OWebSync

Figure 8. Evolution of the total data size on the server.

means that for an update done 20 seconds before the end of
the disruption, and which got synchronized 22 seconds later,
the resynchronization time is 2 seconds.
In the test with 24 clients and 1000 objects, OWebSync

quickly returns to the same performance as before the net-
work disruption. Legion needs more time to synchronize the
missed updates, but also quickly returns to the same perfor-
mance. The operation-based approaches take much longer
to synchronize missed updates and take tens of seconds to
return to the original performance. ShareDB and Automerge
need more than half a minute to return to the same interac-
tive performance as before. This means that in a setting with
frequent disconnections, the user will not be able to gain in-
teractive performance since even when coming back online,
those technologies cannot achieve prompt and interactive
synchronization immediately.

Total size of the data model. All other technologies used
in the evaluation use some form of client identifiers and
version numbers to keep track of changes (e.g. vector clocks
in Legion). This means that the size of the data set will grow
over time, especially in highly dynamic settings like the
web. Figure 8 shows the total data size on the server over

10



OWebSync: A Web Middleware with State-Based CRDTs for Interactive Groupware

time while several users are joining and leaving. The size
of the data set on the server remains constant over time
when using OWebSync. The other techniques grow with
the number of clients and the number of operations. In the
dynamic setting of the web, keeping track of all clients using
version vectors with client identifiers will eventually inflate
and pollute the metadata. Users can clear the browser cache,
browse incognito or visit the web application on multiple
devices including someone else’s device for one time. By
storing those client identifiers in the datamodel on the server,
the performance will decrease over time. Yjs is an exception
and stops growing fast in size after a few minutes. This is
because Yjs will garbage collect old operations after 100
seconds [59]. While this limits the total size of the data, this
operation is not safe and clients that were offline for a longer
time might end up in an inconsistent state or lose data.
The first two benchmarks are performed on a clean data

set, meaning that the size of the data on the server is still
small. If we would start the tests after e.g. 5 hours of warm-
up, the results for the other technologies would be worse. We
evaluated a worst-case scenario for OWebSync, with clean
data sets for the other frameworks.

Summary. Our evaluation shows that the operation-based
approaches work well in continuous online situations with a
limited number of users. Operational Transformation cannot
be used with many clients as the server eventually becomes
a bottleneck. Operation-based approaches can synchronize
updates faster than state-based approaches like Legion and
OWebSync. However, when network disruptions occur, these
technologies cannot achieve acceptable performance and
need tens of seconds to achieve synchronization. Delta-state
CRDTs, as used in Legion, can recover faster from network
disruptions than operation-based approaches, but still need
more than 8 seconds to synchronize missed updates, which
cannot be called interactive anymore. Moreover, the size of
the data set will increase with both the number of updates
and the number of clients. OWebSync can achieve much
better performance in the order of seconds, which is still ac-
ceptable for interactive groupware. In a setting with frequent
offline situations, e.g. for mobile employees, OWebSync is
the most appropriate technology and outperforms all other
frameworks. Over time, OWebSync can continue to deliver
the same prompt and interactive performance, as no client
identifiers or version vectors are stored. Table 1 summarizes
the results in seconds of the large scale test with 24 clients
and 1000 objects for the average user (50th percentile) and
most of the users (99th percentile) for both the online and
offline setting.

6 Related work
The related work consists of three types of work: 1) con-
cepts and techniques such as CRDTs and OT, 2) NoSQL data

Table 1. Summary of the synchronization times in seconds
for 24 clients and 1000 objects.

online offline
50% 99% 50% 99%

ShareDB 4.45 7.69 12.67 25.10
Yjs 0.14 0.17 20.21 109.15
Automerge 0.14 0.20 11.59 18.90
Legion 0.64 1.03 7.61 8.56
OWebSync 1.34 1.49 2.87 3.53

systems such as Dynamo and Cassandra, as well as synchro-
nization frameworks between data centers and 3) synchro-
nization frameworks for replication to the client.

Concepts and techniques. The concepts and techniques like
OT and CRDTs were discussed in Section 2. Other text-based
versioning systems such as Git [49] are not made to manage
data structures and do not always guarantee valid data struc-
tures after synchronization. Code, XML or JSON can end up
malformed and often require user-level resolution.

We now discuss some other extensions to CRDTs. Conflict-
free Partially Replicated Data Types [9] allow to replicate
only part of a CRDT. This helps with bandwidth and memory
consumption, as well as security and privacy [21]. OWeb-
Sync allows replicating any arbitrary sub-tree of the whole
CRDT tree. Hybrid approaches combining operation-based
and state-based CRDTs are also possible as demonstrated by
Bendy [5]. For data that can tolerate staleness, one can make
use of state-based CRDTs, while for data with interactive per-
formance requirements, operation-based CRDTs can be used.
This dynamic decision is only made between the servers,
and not on the clients. For clients, only operation-based
CRDTs are available, since they will never perform enough
updates to justify plain state-based CRDTs. A garbage col-
lection technique can be used to reduce the memory usage
of operation-based CRDTs by defining a join-protocol for
dynamic environments [6]. But this only treats transient
network disruptions where clients will come back online
eventually, which is not necessarily the case for web clients.
Another datatype, called Strong Eventually Consistent Repli-
cated Objects (SECROs) [11] are similar to operation-based
CRDTs, but do not impose restrictions on commutativity of
operations. However, by doing so, SECROs need a global
total order and cannot tolerate network disruptions.
Distributed data systems and NoSQL systems. Based on

the original Dynamo paper [12], many other open-source
NoSQL systems have been developed for structured or semi-
structured data, focusing on eventual consistency within
or between data centers. Dynamo uses multi-value regis-
ters to maintain multiple versions of the data and expects
application-level resolution of conflicts. Cassandra [23, 46]
supports fine-grained versioning of cells in a wide-column
store. It uses wall-clock timestamps for each row-column

11



Anon. Submission Id: 16

cell and adopts a last-write-wins strategy to merge two cells.
CouchDB [47] and MongoDB [52] focus on semi-structured
document storage, typically in a JSON format. CouchDB of-
fers only coarse-grained versioning per document and stores
multiple versions of the document. Applications need to re-
solve version conflicts manually. It also does not support
fine-grained conflict detection within two JSON documents.

Several commercial database systems allow to use CRDTs
as the underlying data model: e.g. Riak [55], Akka [42] and
Redis [7]. Besides those commercial products, several re-
search projects have emerged. Merkle Search Trees (MSF) [4]
implement a key-value store like Dynamo using a state-based
CRDT and a Merkle-tree. It builds the Merkle-tree on top of
the flat data-structure, while OWebSync will make use of the
tree-like structure of the data to build the Merkle-tree. MSF
is targeted to asynchronous background synchronization
between backend servers, and not for interactive groupware
with replication to the clients. Antidote [43] is a research
project to develop a geo-replicated database over world-wide
data centers. It adopts operation-based commutative CRDTs
for highly-available transactions and supports partial repli-
cation but assumes continuous online connections as the
default operational situation for clients. SMAC [13] uses an
operation-based CRDT storage system for state management
tasks for distributed container deployments. DottedDB [17]
uses node-wide dot-based clocks to find changes that need
to be replicated, without the need for explicit tombstones. It
does not support replication to the clients, or offline edits.
Client-tier frameworks for synchronization. Many client-

side frameworks have appeared to enable synchronization
between native clients. Cimbiosys [32] is an application plat-
form that supports content-based partial replication and
synchronization with arbitrary peers. While it shares some
of the goals of OWebSync, it is best suited to synchronize
collections of media data (e.g. pictures, movies) and not for
JSON documents with fine-grained conflict resolution. Swift-
Cloud [31, 39–41] is a distributed object database with fast
reads and writes using a causally-consistent client-side lo-
cal cache and operation-based CRDTs. Metadata used for
causality in the form of vector clocks are assigned by the
data centers. Hence, the size of the metadata is bound by
the number of data centers, and not by the number of up-
dates or the number of clients. The cache is limited in size
and the data is only partially available, limiting what data
can be read and updated during offline operation. Because it
uses operation-based CRDTs, it needs a reliable exactly-once
message channel, which is implemented by using a log.
Besides the frameworks for native clients, there are sev-

eral JavaScript frameworks made for synchronization be-
tween distributed web clients. Legion [37, 51] is a framework
for extending web applications with peer-to-peer interac-
tions. It also supports client-server usage and uses delta-state-
based CRDTs for the synchronization. Automerge [19, 44]
is a JavaScript library for data synchronization adopting

the operation-based JSON data type of Kleppman [20]. It
uses vector clocks which grow in size with the number
of clients. PouchDB [54] is a client-side JavaScript library
that can replicate data from and to a CouchDB server. Lo-
cal data copies are stored in the browser for offline usage.
PouchDB only supports conflict detection and resolution at
the coarse-grained level of a whole document. ShareDB [56]
is a client-server framework to synchronize JSON documents
and adopts OT as synchronization technique between the
different local copies. ShareDB can thus not be used in ex-
tended offline situations. In case of short network disrup-
tions, it can store the operations on the data in memory
and resend them when the connection is restored. The off-
line operations are lost when the browser session is closed.
Yjs [26, 27, 59] is a JavaScript framework for synchronizing
structured data and supports maps, arrays, XML and text
documents. All data types also use operation-based CRDTs
for synchronization. Swarm.js [58] is a JavaScript client li-
brary for the Swarm database, based on operation-based
CRDTs with a partially ordered log for synchronization af-
ter offline situations. Swarm.js also focuses on peer-to-peer
architectures like chat applications and decentralized CDNs,
while OWebSync focuses on client-server line-of-business
applications. None of these JavaScript frameworks support
all of the following: fine-grained conflict resolution, interac-
tive updates when online and fast resynchronization after
being offline, as well as being scalable to tens of concurrently
online clients and hundreds of writers over time.

7 Conclusion
This paper presented a web middleware that supports seam-
less synchronization of both online and offline clients that
are concurrently editing a shared data set. Our OWebSync
middleware implements a generic datamodel, based on JSON,
that combines state-based CRDTs with Merkle-trees. This
allows to quickly find differences in the data set and syn-
chronize them to other clients. Apart from the regular CRDT
structure and the hashes of the Merkle-tree, no other meta-
data needs to be stored. Existing approaches use client iden-
tifiers and version numbers, or even the full history, to track
updates, which will pollute the metadata and decrease per-
formance over time.
The comparative evaluation shows that the operation-

based approaches cannot achieve acceptable performance
in case of network disruptions and need tens of seconds to
achieve resynchronization. Current state-based approaches
using delta-state-based CRDTs are faster to recover than
the operation-based ones, but cannot achieve prompt resyn-
chronization of missed updates. The state-based approach
with Merkle-trees of OWebSync can achieve better perfor-
mance in the order of seconds for both online updates and
missed offline updates, making it suitable for interactive web
applications and groupware.

12



OWebSync: A Web Middleware with State-Based CRDTs for Interactive Groupware

References
[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2015. Efficient

State-Based CRDTs by Delta-Mutation. In Networked Systems. Springer
International Publishing, Cham, 62–76. https://doi.org/10.1007/978-
3-319-26850-7_5

[2] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2018. Delta state
replicated data types. J. Parallel and Distrib. Comput. 111, Supplement
C (2018), 162 – 173. https://doi.org/10.1016/j.jpdc.2017.08.003

[3] Werner Almesberger. 1999. Linux network traffic control – implemen-
tation overview.

[4] Alex Auvolat and François Taïani. 2019. Merkle Search Trees: Effi-
cient State-Based CRDTs in Open Networks. In SRDS 2019 - 38th IEEE
International Symposium on Reliable Distributed Systems. IEEE, Lyon,
France. https://doi.org/10.1109/SRDS.2019.00032

[5] Carlos Bartolomeu, Manuel Bravo, and Luís Rodrigues. 2016. Dynamic
Adaptation of Geo-replicated CRDTs. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing (SAC ’16). ACM, New York,
NY, USA, 514–521. https://doi.org/10.1145/2851613.2851641

[6] Jim Bauwens and Elisa Gonzalez Boix. 2019. Memory Efficient
CRDTs in Dynamic Environments. In Proceedings of the 11th ACM
SIGPLAN International Workshop on Virtual Machines and Interme-
diate Languages (VMIL 2019). ACM, New York, NY, USA, 48–57.
https://doi.org/10.1145/3358504.3361231

[7] Cihan Biyikoglu. 2017. Under the Hood: Redis CRDTs (Conflict-free
Replicated Data Types).

[8] Tim Bray. 2014. The javascript object notation (json) data interchange
format. RFC 7158. IETF. https://www.rfc-editor.org/rfc/rfc7158.txt

[9] Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy.
2015. Conflict-free partially replicated data types. In 2015 IEEE 7th
International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE, 282–289.

[10] Quang-Vinh Dang and Claudia-Lavinia Ignat. 2016. Performance of
real-time collaborative editors at large scale: User perspective. In Inter-
net of People Workshop, 2016 IFIP Networking Conference (Proceedings of
2016 IFIP Networking Conference, Networking 2016 andWorkshops). IFIP,
Vienna, Austria, 548–553. https://doi.org/10.1109/IFIPNetworking.
2016.7497258

[11] Kevin De Porre, Florian Myter, Christophe De Troyer, Christophe
Scholliers, Wolfgang DeMeuter, and Elisa Gonzalez Boix. 2019. Putting
Order in Strong Eventual Consistency. In Distributed Applications and
Interoperable Systems. Springer International Publishing, Cham, 36–56.
https://doi.org/10.1007/978-3-030-22496-7_3

[12] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Siva-
subramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo:
amazon’s highly available key-value store. In ACM SIGOPS operat-
ing systems review, Vol. 41(6). ACM, New York, NY, USA, 205–220.
https://doi.org/10.1145/1294261.1294281

[13] Jacob Eberhardt, Dominik Ernst, and David Bermbach. 2016. SMAC:
State Management for Geo-Distributed Containers. Technical Report.
Technische Universitaet Berlin.

[14] C. A. Ellis and S. J. Gibbs. 1989. Concurrency Control in Groupware
Systems. SIGMOD Rec. 18, 2 (June 1989), 399–407. https://doi.org/10.
1145/66926.66963

[15] Vitor Enes, Paulo Sérgio Almeida, Carlos Baquero, and João Leitão.
2019. Efficient Synchronization of State-based CRDTs. In 2019 IEEE
35th International Conference on Data Engineering (ICDE). 148–159.
https://doi.org/10.1109/ICDE.2019.00022

[16] Vitor Enes, Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker.
2016. Join Decompositions for Efficient Synchronization of CRDTs
After a Network Partition: Work in Progress Report. In First Workshop
on Programming Models and Languages for Distributed Computing
(PMLDC ’16). ACM, New York, NY, USA, Article 6, 3 pages. https:
//doi.org/10.1145/2957319.2957374

[17] R. J. T. Gonçalves, P. S. Almeida, C. Baquero, and V. Fonte. 2017. Dot-
tedDB: Anti-Entropy without Merkle Trees, Deletes without Tomb-
stones. In 2017 IEEE 36th Symposium on Reliable Distributed Systems
(SRDS). IEEE, 194–203. https://doi.org/10.1109/SRDS.2017.28

[18] Ian Hickson. 2012. The WebSocket API, W3C Candidate Recommenda-
tion. Technical Report. https://www.w3.org/TR/2012/CR-websockets-
20120920/

[19] Martin Kleppman and Alastair R Beresford. 2018. Automerge: Real-time
data sync between edge devices. http://martin.kleppmann.com/papers/
automerge-mobiuk18.pdf

[20] Martin Kleppmann and Alastair R Beresford. 2017. A Conflict-free
Replicated JSON Datatype. IEEE Transactions on Parallel and Dis-
tributed Systems 28, 10 (2017), 2733–2746.

[21] Stephan A. Kollmann, Martin Kleppmann, and Alastair R. Beresford.
2019. Snapdoc: Authenticated snapshots with history privacy in peer-
to-peer collaborative editing. Proceedings on Privacy Enhancing Tech-
nologies 2019, 3 (2019), 210 – 232. https://doi.org/10.2478/popets-2019-
0044

[22] Santosh Kumawat and Ajay Khunteta. 2010. A survey on operational
transformation algorithms: Challenges, issues and achievements. In-
ternational Journal of Computer Applications 3, 12 (July 2010), 30–38.
https://doi.org/10.5120/787-1115

[23] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decen-
tralized structured storage system. ACM SIGOPS Operating Systems
Review 44, 2 (2010), 35–40.

[24] Paul Leach, Michael Mealling, and Rich Salz. 2005. A Universally
Unique IDentifier (UUID) URN Namespace. RFC 4122. https://www.rfc-
editor.org/rfc/rfc4122.txt

[25] Ralf Merkle. 1982. Method of providing digital signatures. US
patent 4309569. The Board Of Trustees Of The Leland Stanford Junior
University.

[26] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2015.
Yjs: A Framework for Near Real-Time P2P Shared Editing on Arbitrary
Data Types. In Engineering the Web in the Big Data Era. Springer
International Publishing, Cham, 675–678.

[27] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2016.
Near Real-Time Peer-to-Peer Shared Editing on Extensible Data Types.
In Proceedings of the 19th International Conference on Supporting Group
Work (GROUP ’16). ACM, New York, NY, USA, 39–49. https://doi.org/
10.1145/2957276.2957310

[28] Jakob Nielsen. 1993. Usability Engineering. Nielsen Norman Group.
https://www.nngroup.com/books/usability-engineering/

[29] Jakob Nielsen. 2010. Website Response Times. https://www.nngroup.
com/articles/website-response-times/

[30] N. Preguica, J. M. Marques, M. Shapiro, and M. Letia. 2009. A Commu-
tative Replicated Data Type for Cooperative Editing. In 2009 29th IEEE
International Conference on Distributed Computing Systems. 395–403.
https://doi.org/10.1109/ICDCS.2009.20

[31] Nuno Preguiça, Marek Zawirski, Annette Bieniusa, Sérgio Duarte,
Valter Balegas, Carlos Baquero, and Marc Shapiro. 2014. Swiftcloud:
Fault-tolerant geo-replication integrated all the way to the client ma-
chine. In 2014 IEEE 33rd International Symposium on Reliable Distributed
Systems Workshops. IEEE, 30–33.

[32] Venugopalan Ramasubramanian, Thomas L Rodeheffer, Douglas B
Terry, Meg Walraed-Sullivan, Ted Wobber, Catherine C Marshall, and
Amin Vahdat. 2009. Cimbiosys: A platform for content-based partial
replication. In Proceedings of the 6th USENIX symposium on Networked
systems design and implementation. 261–276.

[33] Ronald Rivest. 1992. The MD5 Message-Digest Algorithm. RFC 1321.
https://www.rfc-editor.org/rfc/rfc1321.txt

[34] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011.
Replicated abstract data types: Building blocks for collaborative ap-
plications. J. Parallel and Distrib. Comput. 71, 3 (2011), 354–368.
https://doi.org/10.1016/j.jpdc.2010.12.006

13

https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.1109/SRDS.2019.00032
https://doi.org/10.1145/2851613.2851641
https://doi.org/10.1145/3358504.3361231
https://www.rfc-editor.org/rfc/rfc7158.txt
https://doi.org/10.1109/IFIPNetworking.2016.7497258
https://doi.org/10.1109/IFIPNetworking.2016.7497258
https://doi.org/10.1007/978-3-030-22496-7_3
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/66926.66963
https://doi.org/10.1145/66926.66963
https://doi.org/10.1109/ICDE.2019.00022
https://doi.org/10.1145/2957319.2957374
https://doi.org/10.1145/2957319.2957374
https://doi.org/10.1109/SRDS.2017.28
https://www.w3.org/TR/2012/CR-websockets-20120920/
https://www.w3.org/TR/2012/CR-websockets-20120920/
http://martin.kleppmann.com/papers/automerge-mobiuk18.pdf
http://martin.kleppmann.com/papers/automerge-mobiuk18.pdf
https://doi.org/10.2478/popets-2019-0044
https://doi.org/10.2478/popets-2019-0044
https://doi.org/10.5120/787-1115
https://www.rfc-editor.org/rfc/rfc4122.txt
https://www.rfc-editor.org/rfc/rfc4122.txt
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1145/2957276.2957310
https://www.nngroup.com/books/usability-engineering/
https://www.nngroup.com/articles/website-response-times/
https://www.nngroup.com/articles/website-response-times/
https://doi.org/10.1109/ICDCS.2009.20
https://www.rfc-editor.org/rfc/rfc1321.txt
https://doi.org/10.1016/j.jpdc.2010.12.006


Anon. Submission Id: 16

[35] Marc Shapiro, Nuno Perguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In SSS 2011 - 13th Inter-
national Symposium Stabilization, Safety, and Security of Distributed
Systems (Lecture Notes in Computer Science), Xavier Défago, Franck
Petit, and Vincent Villain (Eds.), Vol. 6976. Springer Berlin Heidelberg,
Berlin, Heidelberg, 386–400.

[36] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. A comprehensive study of Convergent and Commutative Repli-
cated Data Types. Research Report RR-7506. Inria – Centre Paris-
Rocquencourt ; INRIA. 50 pages. https://hal.inria.fr/inria-00555588

[37] Albert van der Linde, Pedro Fouto, João Leitão, Nuno Preguiça, Santi-
ago Castiñeira, and Annette Bieniusa. 2017. Legion: Enriching Internet
Services with Peer-to-Peer Interactions. In Proceedings of the 26th In-
ternational Conference on World Wide Web (WWW ’17). International
World Wide Web Conferences Steering Committee, Republic and Can-
ton of Geneva, Switzerland, 283–292. https://doi.org/10.1145/3038912.
3052673

[38] Albert van der Linde, João Leitão, and Nuno Preguiça. 2016. ∆-CRDTs:
Making ∆-CRDTs Delta-based. In Proceedings of the 2Nd Workshop on
the Principles and Practice of Consistency for Distributed Data (PaPoC
’16). ACM, New York, NY, USA, Article 12, 4 pages. https://doi.org/10.
1145/2911151.2911163

[39] Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Car-
los Baquero, Marc Shapiro, and Nuno Preguiça. 2013. SwiftCloud: Fault-
Tolerant Geo-Replication Integrated all the Way to the Client Machine.
Research Report RR-8347. INRIA. https://hal.inria.fr/hal-00870225

[40] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa,
Valter Balegas, and Marc Shapiro. 2015. Write Fast, Read in the Past:

Causal Consistency for Client-side Applications. Research Report RR-
8729. Inria. https://hal.inria.fr/hal-01158370

[41] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa,
Valter Balegas, and Marc Shapiro. 2015. Write Fast, Read in the Past:
Causal Consistency for Client-Side Applications. In Proceedings of the
16th Annual Middleware Conference (Middleware ’15). ACM, New York,
NY, USA, 75–87. https://doi.org/10.1145/2814576.2814733

[42] 2018. Akka. https://doc.akka.io/docs/akka/current/distributed-data.
html.

[43] 2014. Antidote. http://syncfree.github.io/antidote.
[44] 2017. Automerge. https://github.com/automerge/automerge.
[45] 2019. Azure. https://azure.microsoft.com.
[46] 2009. Apache Cassandra. https://cassandra.apache.org.
[47] 2005. CouchDB. https://couchdb.apache.org.
[48] 2011. Fabric.js. https://github.com/fabricjs/fabric.js.
[49] 2005. Git. https://git-scm.com/.
[50] 2018. Google Docs. https://support.google.com/docs/answer/2494822.
[51] 2016. Legion. https://github.com/albertlinde/Legion.
[52] 2009. MongoDB. https://www.mongodb.com/.
[53] 2019. opensignal.com. https://www.opensignal.com/reports/2019/01/

usa/mobile-network-experience.
[54] 2013. PouchDB. https://pouchdb.com.
[55] 2010. Riak. http://docs.basho.com/riak/kv.
[56] 2013. ShareDB. https://github.com/share/sharedb.
[57] 2018. Speedtest.net. http://www.speedtest.net/reports/united-states/

2018/Mobile/.
[58] 2013. Swarm.js. https://github.com/gritzko/swarm.
[59] 2014. Yjs. https://github.com/y-js/yjs.

14

https://hal.inria.fr/inria-00555588
https://doi.org/10.1145/3038912.3052673
https://doi.org/10.1145/3038912.3052673
https://doi.org/10.1145/2911151.2911163
https://doi.org/10.1145/2911151.2911163
https://hal.inria.fr/hal-00870225
https://hal.inria.fr/hal-01158370
https://doi.org/10.1145/2814576.2814733
https://doc.akka.io/docs/akka/current/distributed-data.html
https://doc.akka.io/docs/akka/current/distributed-data.html
http://syncfree.github.io/antidote
https://github.com/automerge/automerge
https://azure.microsoft.com
https://cassandra.apache.org
https://couchdb.apache.org
https://github.com/fabricjs/fabric.js
https://git-scm.com/
https://support.google.com/docs/answer/2494822
https://github.com/albertlinde/Legion
https://www.mongodb.com/
https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience
https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience
https://pouchdb.com
http://docs.basho.com/riak/kv
https://github.com/share/sharedb
http://www.speedtest.net/reports/united-states/2018/Mobile/
http://www.speedtest.net/reports/united-states/2018/Mobile/
https://github.com/gritzko/swarm
https://github.com/y-js/yjs

	Abstract
	1 Introduction
	2 Motivation, Background and Approach
	2.1 Case studies
	2.2 Background, principles and approach

	3 The OWebSync Data Model
	4 Web-based synchronization architecture
	5 Performance evaluation
	6 Related work
	7 Conclusion
	References

