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Abstract
One of the visions of Tim Berners-Lee, the founder of the

web, is that the web should shift to a client-centric, decentral-

ized model where web clients become the leading execution

environment for application logic and data storage. Both

Gartner and the Web3 foundation consider client-centric

decentralization as one of the key properties of Web 3.0.

However, existing peer-to-peer web middleware only sup-

port operation in a fully trusted client network. Other de-

centralized solutions often use a heavyweight blockchain

platform in the backend. Moreover, traditional Byzantine

consensus protocols are not well-suited for a decentralized

client-centric web with many network or node failures.

In this paper we present WebLedger, a browser-based mid-

dleware for decentralizedweb applications in small, community-

driven networks. We propose a novel, optimistic, leaderless

consensus protocol, tolerating Byzantine replicas, combined

with a robust and efficient state-based synchronization pro-

tocol. WebLedger uses an optimized implementation of the

standard BLS scheme for efficient aggregation and storage

of signatures. No large backend infrastructure is required, as

the middleware is purely browser-based. No transaction log

or blockchain is stored, keeping the overall storage footprint

small for client-centric devices.

Our performance evaluation shows that WebLedger can

achieve finality of transactionswithin seconds in community-

driven networks of mobile web clients, even in the context of

network problems, node failures and Byzantine behaviour.

1 Introduction
Decentralization is envisioned as one of the key properties

of the next-generation Web 3.0 by many. This idea was first

introduced by the founder of the web, Tim Berners-Lee [14].

Both Gartner [28, 88] and the Web3 Foundation [89] de-

fine Web 3.0 as the decentralized Web, where users are in

control of their data, and where centralized intermediated

interactions are replaced by decentralized infrastructure and

application platforms. Often, blockchain is put forward as

the underpinning technology of this decentralized Web 3.0.

Regarding application domains, small-scale, citizen-driven

networks can open the road to many application cases, such

as use cases in the sharing economy, such as car-sharing in a

local neighborhood. Such ad-hoc client-centric collaboration

can also enable small merchant networks with use cases such

as loyalty cards at a farmer’s market or a local shopping

street. In such community-driven collaborative distributed

systems, web applications could evolve into a decentralized,

client-centric architecture in which browsers become the

leading execution environment for application logic and data

storage. Browsers and client-side web technology also offer

more and more capabilities to enable fully client-side web

applications that can operate independently and in a stand-

alone fashion, in contrast to the server-centric model [8, 31].

Recently, Progressive Web Apps [79] also focus on client-

centric, web application architectures that can operate on

mobile devices with problematic network conditions.

However, state-of-the-art peer-to-peer data synchroniza-

tion systems for the browser like Legion [82], Yjs [64], and

Automerge [43] focus on full replication and consistency

between fully trusted peers. Each replica can modify all data,

and all modifications to the data are automatically replicated

to all replicas. Their synchronization protocols lack Byzan-

tine fault-tolerance (BFT). BFTmeans that it can both tolerate

replica and network failures, as well as malicious replicas.

Traditionally, distrust between interacting parties is solved

using a centralized trusted party. While this is often bene-

ficial for performance, a lot of power is given to one party,

that can decide to manipulate the data and charge high trans-

action costs. When trust is lacking, one can opt for a more

decentralized consensus between several mistrusting par-

ties. Starting with Bitcoin [62], many Proof-of-Work (PoW)

blockchains emerged. However, their confirmation time is

too slow for many use cases, and they typically lack finality.

Bitcoin needs about one hour to confirm a transaction with

a high probability. Moreover, PoW needs a lot of processing

power and energy which are not available on mobile devices.

Blockchains also store an immutable history of all transac-

tions on every replica, leading to large storage overhead.

Lightweight clients that use a proxy node to communicate

with the blockchain exist, but some party still needs to man-

age the full node, which clients need to trust. Other types of

blockchain use a BFT consensus protocol. Hyperledger Fab-

ric [3] can use BFT-SMART [15] and achieves high through-

put and low latency. However, it requires a complex back-end

infrastructure, with many different servers, and replicas still

need to store the full operation-based transaction history.

Independent of the heavy back-end infrastructure, the

consensus protocols such as BFT-SMART are not well-suited

for a decentralized client-centric web with many network or

node failures. Performance degradation results in confirma-

tion times that are not usable for human transactions where

finality must be ensured in a few seconds (e.g a loyalty card).
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In this paper we presentWebLedger, a web middleware for

decentralized, community-driven, web applications between

mistrusting clients. It supports a client-centric, browser-

based, state-based, permissioned ledger with a low infras-

tructure and storage footprint. WebLedger offers consistent

and robust confirmation times to achieve finality of trans-

actions in the order of seconds, even in failure settings and

Byzantine environments.

The state-based ledger does not keep track of an operation

log or transaction history in a blockchain. The ledger is fully

maintained, synchronized, and agreed on by mobile clients

in their web browser. To achieve this, WebLedger combines

the following key technical contributions:

• Lightweight, leaderless, client-side Byzantine fault-

tolerant synchronization and consensus.

• Optimistic consensus using a fast path when nobody

is acting Byzantine, gracefully degrading to the slow

path when under attack.

• Efficient computation and compact storage of signa-

tures using an optimized BLS signature scheme.

• Efficient, robust, state-based synchronization and com-

pact storage using state-based CRDTs, instead of stor-

ing a chain of transactions.

Our evaluation, using our application use case of inte-

grated loyalty points, shows that applications using the Web-

Ledger middleware can achieve realistic confirmation times

and finality for typical business transactions and transaction

rates. In our example, safety and liveness can even be guaran-

teed within communities of 60 merchants and a throughput

of one transaction per second. WebLedger achieves a latency

of less than 2 seconds in optimal environments, and less than

10 seconds in Byzantine environments.

Section 2 further discusses some motivating use cases and

background. Section 3 presents WebLedger’s BFT consensus

protocol that is both optimistic and state-based. The detailed

web-based middleware architecture of WebLedger is elabo-

rated in Section 4. Our evaluation in Section 5 focuses on

many aspects of performance in both normal scenario’s as

well as Byzantine scenarios. Section 6 elaborates on impor-

tant related work. We conclude in Section 7.
1

2 Motivation and background
This section further motivates the need for a lightweight, ro-

bust consensusmiddleware by describing several community-

driven use cases. Then we give some background on state-of-

the-art approaches using a blockchain and BFT consensus.

1
A preliminary workshop paper [9] already described our use case of loyalty

points in more detail together with an early solution. This paper presents

the full technical results and includes a novel consensus algorithm with

stronger liveness guarantees and the state-based replication protocol, the

use of aggregate signatures, and an extensive evaluation.

2.1 Motivational use cases
We describe three use cases that would benefit from the

lightweight consensus offered by WebLedger. They all in-

volve business transactions happening in real life and need

interactive performance, rather than high throughput.

Sharing economy. Small communities, such as an apart-

ment building or local neighborhood, can share tools or

cars [52] with each other using a P2P platform to keep

track of the current possession and reservation of tools and

cars [71]. When a tool is being exchanged, it is checked on

potential damage which can be registered in the network.

Microloans. Microloans enable individuals, rather than

banks, to issue loans to other individuals or small businesses.

This has the advantage that also individuals with a bad credit

rating or without enough collateral can receive a loan. This

community initiative can prevent loan sharks, especially in

developing countries.

Loyalty programs. Integrated loyalty programs can be

more effective than traditional loyalty programs that are

limited to a single company [30]. Think about airlines who

award miles which can be redeemed with several partners.

Such collaborations usually introduce an extra trusted inter-

mediary and addmore layers of management and operational

logistics. This trusted party can charge high transaction costs

to be part of the integrated network. For small merchants on

a farmer’s market or in a local shopping street, this opera-

tional overhead is too much of a burden. A decentralized P2P

network can enable fast and secure creation, redemption, and

exchange of loyalty points across the different merchants.

In the remainder of this paper, we focus on the loyalty

use case, as this use case has the largest scale in terms of the

transaction throughput and the number of participants.

2.2 Background on blockchains and BFT consensus
Existing blockchains can be roughly split into two categories:

public and permissioned blockchains. Public blockchains

are open for everyone to participate in. Two examples are

Bitcoin [62] and Ethereum [85]. Bitcoin allows everyone

to host a replica node and submit transactions. However,

Bitcoin is quite slow, as a new block is only created every

10 minutes on average. This means that transactions take

on average 10 minutes to be confirmed by the network. But

as multiple conflicting chains can occur, one must wait for

at least 6 blocks to be sure that a transaction will not be

reverted. This increases the total latency to one hour, which

is too slow for many of the motivational use cases. Ethereum

is another public blockchain with a much faster average

block time, and consequently a lower latency. Ethereum

allows everyone to write smart-contracts to be executed by

the Ethereum network. Each invocation of a contract costs

a small amount of Ether (called gas). This makes Ethereum

infeasible for small business transactions such as loyalty

points, as the total cost will become too high.
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Permissioned or private blockchains use access control to

limit who can see and create transactions on the blockchain.

Because they can only be accessed by a limited number of

known parties, transaction fees are not required to reward

miners and combat spam. An example is Hyperledger Fab-

ric [3]. These private blockchains can use a Byzantine Fault-

Tolerant consensus protocol to reach consensus over which

transactions to execute and in which order. They have much

smaller latency and can process more transactions per sec-

ond compared to the public blockchains. However, to set up

Hyperledger Fabric, there is a large back-end infrastructure

required. The actual blockchain network consists of many

nodes: peers, orderers, REST-API servers, database servers,

and a certificate authority. Setting up andmanaging these ser-

vices requires a lot of infrastructural management for small

merchants. They do not have the knowledge nor budget for

such a deployment, especially considering the maintenance

overhead and resource costs. These small merchants want

to quickly set up an integrated loyalty network with mini-

mal back-end setup. However, most of them already own a

desktop or mobile computer such as a laptop or tablet.

Two existing state-of-the-art protocols for BFT consensus

are BFT-SMART [15] and Tendermint [20, 21]. BFT-SMART is

a more traditional BFT protocol, similar to PBFT [77], where

all replicas are connected to each other, and one leader drives

the protocol. If that leader fails, a new one will have to be

elected before any progress can be made. BFT-SMART can

be used in Hyperledger Fabric [78]. Tendermint [21] uses

Gossip for communication between the replicas. There is still

a leader, however, that leader changes frequently. Tendermint

is used in the Cosmos blockchain [47].

3 Optimistic state-based BFT consensus
This section explains the state-based consensus protocol

used in WebLedger. First, it describes the communication

and adversary model. Then it explains the detailed consen-

sus protocol, followed by the state-based communication

protocol. At last, this section discusses safety and liveness.

3.1 Overview and adversary model
The core protocol is a partially synchronous, leaderless, Byzan-

tine fault-tolerant consensus protocol. Communication is

partially synchronous if there is an unknown upper bound

Δ on message delivery [26]. An adversary can delay the net-

work for a finite amount of time, however, after at most

Δ, some stream of messages can be delivered. This bound

on communication is necessary as deterministic Byzantine

consensus is not possible with fully asynchronous communi-

cation [29]. An adversary might also corrupt up to 𝑓 replicas

of the 3𝑓 + 1 total replicas. They can deviate from the proto-

col in any arbitrary way. Such replicas are called Byzantine

replicas, while the replicas that are strictly following the pro-

tocol are called honest replicas. We assume attackers cannot

forge the used asymmetric signatures or find collisions for

the used cryptographic hash functions.

The protocol is used to implement an Atomic Register [48]

that can hold a single value that can be read and written

by multiple replicas. All writes are atomic, meaning that

only a single state-transition can happen at any time. Extra

conditions can be applied to limit who can write to it, and

which values are acceptable.

The protocol does not use a leader to coordinate the proto-

col, removing a common performance bottleneck compared

to many existing BFT protocols. The consensus protocol

uses voting, where every replica has exactly one vote. One

or more replicas propose a new value. Other replicas start

voting on those proposals. Once a proposal has reached a su-

permajority of at least 2𝑓 +1 votes, with 𝑓 the total number of

Byzantine replicas the system should tolerate, the proposal

is accepted and becomes the new value. Unlike blockchains,

consensus is reached for each register separately, and there

is no chain of transactions. Only the current state and pro-

posals for the next state are stored. The next section explains

this protocol in more detail.

3.2 Protocol in detail
The detailed specification is depicted in Figure 1. Each regis-

ter has its own state which consists of the current value, and

zero or more proposals for new values. The current value is

signed by a supermajority of 2𝑓 + 1 replicas. The SET opera-

tion creates a new proposal. The proposal has a version one

greater than the current accepted value, a round and step

equal to zero, and the new value. This proposal is signed

by the proposing replica. The current value and proposals

are replicated by using a state-based Gossip protocol. The

MERGE operation is called when the state of another replica

is received. This operation gets as input the state of another

replica and advances the current local state. The new value

will be the value with the highest version number. Since

each accepted value is always signed by a supermajority of

the replicas, it can be accepted without the need to verify

intermediate versions. The new set of proposals is the union

between the local and received set of proposals. All proposals

for a smaller or equal version than the accepted value can be

discarded. If there are proposals left, it means that replicas

are trying to reach consensus for a new value. Consensus is

reached in two steps (0 and 1). Once a supermajority of the

replicas vote on the same value in step 0, the replicas move

on to step 1. If now a supermajority of the replicas vote on

the same value in step 1, the value is accepted. An honest

replica can only vote for a proposal when it has not voted for

any other proposal with the same version, round and step.

Split-votes. Since there is no leader driving the protocol,

multiple valid values might be proposed concurrently. this

can lead to a split vote between the proposals, which all get

a portion of the votes. No supermajority is reached, so the
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1: types
2: 𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑠 ≡ N
3: 𝑅𝑜𝑢𝑛𝑑𝑠 ≡ N
4: 𝑆𝑡𝑒𝑝 ≡ {0, 1}
5: 𝑆𝑖𝑔𝑠 ≡ P(I × Σ) ⊲ Signatures

6: 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ≡ P(𝑉𝑒𝑟𝑠𝑖𝑜𝑛 ×𝑅𝑜𝑢𝑛𝑑 × 𝑆𝑡𝑒𝑝 × 𝑣𝑎𝑙𝑢𝑒 × 𝑆𝑖𝑔𝑠)
7: initial state
8: 𝑉 ← ⊥ ∈ 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ∪ {⊥} ⊲ current value

9: 𝑃 ← ∅ ⊂ 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ⊲ set of current proposals

10: 𝐼 ⊲ replica ID

11: 𝐼𝐷 ⊲ register ID

12: 𝑄 ⊲ quorum size, ⌊ 2
3
× 𝑛 + 1⌋

13: define
14: 𝑃0 ≡ {𝑝 ∈ 𝑃 : 𝑝𝑠𝑡𝑒𝑝 = 0 ∧ 𝑝𝑟𝑜𝑢𝑛𝑑 = max(𝑃𝑟𝑜𝑢𝑛𝑑 )}
15: 𝑃1 ≡ {𝑝 ∈ 𝑃 : 𝑝𝑠𝑡𝑒𝑝 = 1 ∧ 𝑝𝑟𝑜𝑢𝑛𝑑 = max(𝑃𝑟𝑜𝑢𝑛𝑑 )}
16: procedure set(𝑣𝑎𝑙𝑢𝑒)
17: if ¬ has_voted_in_last_round(𝑃)
18: 𝜎𝐼 ← sign(𝐼𝐷 ⊕ (𝑉𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 1) ⊕ 0 ⊕ 0 ⊕ 𝑣𝑎𝑙𝑢𝑒)
19: 𝑃 ← 𝑃 ∪ {((𝑉𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 1), 0, 0, 𝑣𝑎𝑙𝑢𝑒, {𝜎𝐼 })}
20: else ⊲ wait until previous consensus is reached

21: procedure merge(𝑉 ′, 𝑃 ′, 𝐼 ′)
22: if 𝑉 ′𝑣𝑒𝑟𝑠𝑖𝑜𝑛 > 𝑉𝑣𝑒𝑟𝑠𝑖𝑜𝑛
23: if size(𝑉 ′𝑠𝑖𝑔𝑠 ) < 𝑄 ∨ ¬verify(𝑉 ′𝑠𝑖𝑔𝑠 )
24: return distrust(𝐼 ′)
25: 𝑉 ← 𝑉 ′

26: if ∃ 𝑝 ∈ 𝑃 ′ : ¬verify(𝑝𝑠𝑖𝑔𝑠 )
27: return distrust(𝐼 ′)
28: 𝑃 ← {𝑝 ∈ 𝑃 ∪ 𝑃 ′ : 𝑝𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑉𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 1}
29: if size(𝑃1) > 0

30: if ¬ has_voted_in_last_round(𝑃1)
31: 𝑝 ← proposal_with_most_votes(𝑃1)
32: 𝜎𝐼 ← sign(𝐼𝐷⊕𝑝𝑣𝑒𝑟𝑠𝑖𝑜𝑛⊕𝑝𝑟𝑜𝑢𝑛𝑑 ⊕1⊕𝑝𝑣𝑎𝑙𝑢𝑒 )
33: 𝑝𝑠𝑖𝑔𝑠 ← 𝑝𝑠𝑖𝑔𝑠 ∪ {𝜎𝐼 }
34: if ∃ 𝑝 ∈ 𝑃1 : size(𝑝𝑠𝑖𝑔𝑠 ) > 𝑄 ⊲ commit

35: 𝑉 ← 𝑝

36: 𝑃 ← ∅
37: else if size(𝑃0) > 0

38: if ¬ has_voted_in_last_round(𝑃0)
39: 𝑝 ← proposal_with_most_votes(𝑃0)
40: 𝜎𝐼 ← sign(𝐼𝐷⊕𝑝𝑣𝑒𝑟𝑠𝑖𝑜𝑛⊕𝑝𝑟𝑜𝑢𝑛𝑑 ⊕0⊕𝑝𝑣𝑎𝑙𝑢𝑒 )
41: 𝑝𝑠𝑖𝑔𝑠 ← 𝑝𝑠𝑖𝑔𝑠 ∪ {𝜎𝐼 }
42: if ∃ 𝑝 ∈ 𝑃0 : size(𝑝𝑠𝑖𝑔𝑠 ) > 𝑄 ⊲ pre-commit

43: 𝜎𝐼 ← sign(𝐼𝐷⊕𝑝𝑣𝑒𝑟𝑠𝑖𝑜𝑛⊕𝑝𝑟𝑜𝑢𝑛𝑑 ⊕1⊕𝑝𝑣𝑎𝑙𝑢𝑒 )
44: 𝑃 ← {(𝑝𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑝𝑟𝑜𝑢𝑛𝑑 , 1, 𝑝𝑣𝑎𝑙𝑢𝑒 , {𝜎𝐼 })}
45: else if num_votes_in_last_round(𝑃0) > 𝑄

46: ⊲ possibly blocked, start new round

47: 𝜎𝐼 ← sign(𝐼𝐷 ⊕𝑝𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ⊕ (𝑟 +1) ⊕0⊕𝑝𝑣𝑎𝑙𝑢𝑒 )
48: 𝑃 ← 𝑃 ∪ {(𝑝𝑣𝑒𝑟𝑠𝑖𝑜𝑛, (𝑟 + 1), 0, 𝑝𝑣𝑎𝑙𝑢𝑒 , {𝜎𝐼 })}

Figure 1. Consensus protocol for the Atomic Register.

protocol cannot progress to the next step. If a replica detects

that this happened, it creates a new proposal with the value of

the currently winning one, and increases the round number

of the proposal. A new round is started, and all replicas have

a new chance to vote. Since all honest replicas are voting on

the winning proposals, it is likely that in only a few rounds

one of the proposals will have reached a supermajority. This

concept is known as meta-stability [72, 73].

In practice, however, it is not possible to reliably detect if

the consensus is blocked. Up to 𝑓 replicas can act Byzantine,

including not sending anything at all. This means that after

receiving 2𝑓 + 1 votes, a replica needs to make a decision, as

it is possible that no more votes will arrive. If all those votes

are for the same proposal, a supermajority is reached and a

new value is selected. Otherwise, the replica assumes that

the consensus is blocked and starts a new round. We will

prove that this assumption is safe in Section 3.4.

Optimistic BFT consensus. The outlined protocol is re-

silient against Byzantine actors. However, it includes a costly

verification step each time a new state is received (Figure 1,

line 26). If none of the replicas are acting Byzantine, this step

can be delayed until a supermajority is reached (Figure 1,

line 34 and 42). When the verification succeeds at that time,

it is safe to accept the proposal as the new value. However,

if the verification fails, the proposal cannot be accepted and

it is not possible to find out which replicas are Byzantine.

The protocol uses a hybrid approach starting with a fast

path for round numbers equal to zero. When verification in

the end fails, a new round is created and the verification for

all the following rounds is done every time a new state is re-

ceived. This slow path is used until consensus is reached. The

next time a new proposal is submitted for the next version,

the round number will again be zero and the fast path will

be used. This hybrid approach enables very fast consensus

when all replicas are honest, while gracefully degrading to a

slower, more costly protocol that can detect which replicas

are actively acting Byzantine.

3.3 Data synchronization protocol
The previous section described the conceptual consensus

protocol. This section explains how the state of an Atomic

Register is replicated to other replicas.

The state of an atomic register, consisting of the current

value and the set of proposals, is a state-based Conflict-

free Replicated Data Type (CRDT) [76]. By using a state-

based approach, rather than the operation-based approach

of operation-based CRDTs, Operational Transformation [27],

or blockchains, we only need to store the current state to-

gether with some metadata. This metadata is the version

number and the set of current proposals. Replicas do not

need to keep track of the state of other replicas, or which

messages are already received by which replica. The replicas

execute a Gossip protocol to exchange their current state

4



WebLedger: a Byzantine Fault-Tolerant State-Based Ledger for a Decentralized Web without a Blockchain

𝐴 ∅ {(1, 0, 0, 5, {𝜎𝐴})}
𝑠𝑒𝑡 (5)

{(1, 0, 0, 5, {𝜎𝐴, 𝜎𝐵, 𝜎𝐶 }), (1, 0, 1, 5, {𝜎𝐴, 𝜎𝐵})}

𝐵 ∅ {(1, 0, 0, 5, {𝜎𝐴, 𝜎𝐵})} {(1, 0, 0, 5, {𝜎𝐴, 𝜎𝐵, 𝜎𝐶 }), (1, 0, 1, 5, {𝜎𝐵})}

𝐶 ∅ {(1, 0, 0, 5, {𝜎𝐴, 𝜎𝐶 })} {(1, 0, 0, 5, {𝜎𝐴, 𝜎𝐵, 𝜎𝐶 }), (1, 0, 1, 5, {𝜎𝐵, 𝜎𝐶 })}

𝐷 ∅ {(1, 0, 0, 5, {𝜎𝐴, 𝜎𝐶 , 𝜎𝐷 }), (1, 0, 1, 5, {𝜎𝐷 })}

Figure 2. State-based synchronization of an Atomic Register with 4 replicas 𝐴, 𝐵,𝐶, 𝐷 ∈ I. Only the set of current proposals is

shown, containing tuples of (𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑟𝑜𝑢𝑛𝑑 , 𝑠𝑡𝑒𝑝 , 𝑣𝑎𝑙𝑢𝑒 , 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠).

with each other. Each time a new state is received, the local

state is merged with it using the MERGE procedure in Figure 1.

An example of this process is shown in Figure 2. There are

four non-Byzantine replicas with an empty set of proposals.

Each proposal lists the version, the round, the step, the value,

and the set of signatures of the replicas that voted for that

proposal. The scenario starts with replica A proposing a new

value. The state is replicated to the other replicas randomly,

and all replicas aggregate the votes in the set of signatures.

Once enough votes are aggregated for value 5, the proposal

moves to step 1 and replicas can again vote to commit the

value. Once a supermajority is reached in step 1, the value

will be committed (not shown in Figure 2).

WebLedger uses Merkle-trees [57] to efficiently synchro-

nize only the state of the registers that require an update [24].

Our approach is similar to Merkle Search Trees [10]. If the

state of two replicas is the same, only the root hash is sent and

compared, which limits the network usage. If the states differ,

the protocol descends in the tree looking for themismatching

hashes to find out which registers must be synchronized.

3.4 Correctness
This section sketches the proof that the algorithm provides

safety and liveness. The protocol described before guarantees

both safety and liveness when there are at least 2𝑓 +1 honest
replicas available.

Safety. To provide safety, all honest replicas need to de-

cide on the same value for any version number. Assume two

different replicas have committed different values X and Y

with the same version. Either they are committed in the same

round or in different rounds.

If they would have been committed in the same round, at

least 2𝑓 + 1 replicas voted on X, and at least 2𝑓 + 1 replicas
votes on Y. At most 𝑓 replicas are Byzantine, so at least 𝑓 + 1
honest replicas voted on X, and at least 𝑓 + 1 honest replicas
voted on Y. Given that no honest replica will vote for two

different values in the same version-round-step combination,

those 𝑓 + 1 replicas are all different. However, this would

mean that (𝑓 + 1) + (𝑓 + 1) + 𝑓 = 3𝑓 + 2 replicas voted, which
is impossible as there are only 3𝑓 + 1 replicas. So, it is not
possible that both X and Y are committed in the same round.

Assume that X and Y are committed in different rounds.

A new round can only be started when a potential split vote

is detected. As discussed earlier, it is not possible to detect

a blocked round reliably, as Byzantine replicas might not

answer. Either the round was really blocked, or the round

commits later, after a new round is already started. If the

round would have been really blocked, it will never commit

and consensus will be reached in one of the next rounds.

Assume that the round (𝑅0) was not really blocked, and that

eventually a supermajority is reached for one value (X). Since

a new round (𝑅1) was started, replicas are allowed to vote on

a different value in the new round (Y). In the worst case, a

supermajority is reached in 𝑅0 for X, but most replicas do not

observe this supermajority and instead observe a split-vote

and start a new round. Those observing the supermajority

for X, will progress to step 1 and commit after 2𝑓 + 1 replicas
agree. Replicas will only vote for this lower round 𝑅0 if they

haven’t observed 𝑅1 yet. So, to commit𝑋 , at least 𝑓 +1 honest
replicas have not seen 𝑅1. To commit a value in 𝑅1, 2𝑓 + 1
replicas need to vote, meaning that at least 𝑓 + 1 honest

replicas need to vote. However, we just stated that 𝑓 + 1 of
the 2𝑓 + 1 honest replicas have not seen 𝑅1, so the remaining

𝑓 honest replicas are not enough to reach a supermajority in

𝑅1 and only a single value (X) will be committed. In all cases,

only a single value gets committed for each version.

Liveness. To provide liveness, the protocol needs to even-
tually commit a new value if new values are proposed. Safety

is always chosen over liveness. When there are not enough

honest replicas online to reach a supermajority, no consensus

can be reached and the protocol will simply block and wait

for more votes. All those replicas do not need to be online

at the same time, since the state is replicated to all available

replicas, and votes can be verified by all replicas.

A replica that has not voted yet for themost recent version-

round-step combination, will vote for the proposal with the

most votes already. So the number of votes will increase over

time, and eventually a supermajority of the replicas will have

voted for a proposal. If a supermajority of the replicas vote

for the same proposal in step 1, the value can be committed.

If they do so in step 0, the protocol will progress to step 1.

In case consensus was really reached in step 0, it will also be
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reached in step 1 and the value can be committed. In case the

Byzantine replicas tricked an isolated replica into starting

a new round with a different value, step 1 might not reach

consensus. However, the Byzantine replicas will be identified

because they voted twice for the same version-round-step

combination in step 0, and consensus can be reached in one

of the following rounds, with less Byzantine replicas present.

The other case is that a supermajority has voted, but this

ended up with a split vote. In this case, a new round is started

and replicas will again vote. They will choose the proposal

with the most votes in the previous round, or if both pro-

posals have an equal amount of votes, they will choose the

largest value according to their lexicographical order. Differ-

ent replicas might observe different split-votes, and therefor

vote on different values in the next round. A replica will only

progress to the next round if 2𝑓 + 1 votes are received and

a split-vote is present. Due to the state-based nature of the

protocol, all votes for the previous rounds are also present

when a new round is replicated. This prevents Byzantine

replicas from voting twice on different proposals. Eventually,

this will always be detected in one of the following rounds

when enough honest replicas have replicated their state to

each other, and the Byzantine replica will be excluded from

the network. This guarantees liveness with a very high prob-

ability due to the concept of meta-stability [72, 73].

4 Architecture and implementation
This section describes the architecture, deployment, and im-

plementation of WebLedger. This middleware architecture

is key to support the BFT consensus and synchronization

protocol described in the previous section. The middleware

is fully web-based and can execute in any recent browser

without any plugins. This section first describes the overall

architecture. Then it explains our use of aggregate signa-

tures using BLS to reduce the size of the proposals. The last

subsection lists several performance optimization tactics.

4.1 Overall architecture
The WebLedger middleware architecture consists of five

main components (Figure 3): (i) a public interface that offers
an API for developers, (ii) a peer-to-peer network component

to communicate directly with other browsers, (iii) a consensus
component to handle the consensus protocol described in

the previous section, (iv) amembership component to handle

all cryptographic operations, and (v) a store component to

save all state to persistent storage.

(i) Public interface. The Public interface component pro-

vides an API to application developers to use this middleware.

It provides four functions to modify the application state:

• GET(key) returns the current value of the atomic reg-

ister at the given key,

• SET(key, value) submits a proposal to update the

atomic register at the given key,

• DELETE(key) deletes the atomic register at the given

key. A tombstone is kept for correct replication,

• LISTEN(key, callback) supports reactive program-

ming by calling the callback with the new value each

time the value of the register at the given key changes.

Apart from those functions, the middleware also provides a

constructor function to initialize the middleware by passing

the following configuration as parameters:

• the list of all members of the network, together with

their public key,

• the private key of the replica,

• the URL to the signaling server to set up the peer-to-

peer connections,

• an access-control callback to verify state-changes.

This access-control callback is called before voting for a

new proposed value, with both the old and new values as

arguments. It should return a boolean whether to allow this

change or not. This callback enables the implementation of

basic access control policies on the values. One example is

to embed the public key of the owner into the value and

requiring each new value to be signed by the owner. This

value can only be changed by a single party, and also supports

passing ownership by changing the embedded public key.

(ii) Peer-to-peer network. The P2P Network component

manages the peer-to-peer network and is responsible for

the replication of the state-based CRDTs. Many browser-

based replicas are connected to each other using WebRTC

(Web Real-Time Communications) [40]. WebRTC enables

a browser to communicate peer-to-peer. However, to set

up those peer-to-peer connections, WebRTC needs a signal-

ing server to exchange several control messages. Once the

connection is set up, all communication can happen peer-to-

peer, without a central server. Another WebRTC connection

can also be used as a signaling layer, so once a replica is

connected to another one, it can also connect to all of its

peers, without the need of a central signaling server. In our

adversary model, this server is assumed to be trusted. If this

signaling server would be malicious, the safety of the system

is not endangered as no actual data is sent to this central

server. However, some peers might not be able to join the net-

work and the required supermajority might not be reached,

which violates liveness. The use of multiple independent

signaling servers can lower the risk of this happening.

(iii) Consensus. The Consensus component handles the

consensus protocol described in Section 3. It maintains a

Merkle-tree of all atomic registers and uses state-based CRDTs

to replicate the local state to other replicas using the P2P
Network component. The Merkle-tree is constructed using

the Blake3 [66] cryptographic hash function.

(iv) Membership. The Membership component contains

all cryptographic material and is responsible for the signing

and verification operations. The Consensus component uses
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Figure 3. Browser-based architecture of WebLedger.

this for all cryptographic operations. We implemented two

different versions of this component, one using ECDSA for

signatures using the built-in WebCrypto [84] browser API

(not shown in Figure 3), and a second implementation using

an aggregate signature scheme called BLS [18]. Section 4.2

provides more details about the BLS implementation.

(v) Store. At last, the Store component saves all state to

the IndexedDB [1] database. IndexedDB is a key-value data-

store built inside the browser. Each atomic register and the

Merkle-tree are serialized to bytes and stored here under the

respective key. This enables users to close the browser and

continue afterward without losing the current state.

4.2 Aggregate signatures using BLS
The consensus protocol in Section 3 is aggregation and veri-

fication intensive in terms of digital signatures. Signatures

must be continuously collected and verified. This means, in

every intermediate state of a transaction, each party needs

to keep track of all incoming signatures and verify them

to prevent malicious scenarios. Persistence, management,

and transmission of these signatures are costly, especially

in a browser-based setting. Therefore, our protocol requires

short signatures to reduce storage and network footprint.

Boneh–Lynn–Shacham (BLS) [18] presented a signature

scheme based on bilinear pairing on elliptic curves. The size

of a single signature produced by BLS is short, since a signa-

ture is an element of an elliptic curve group. The aggregation

algorithm [17] outputs a single signature as short as the oth-

ers, unlike other approaches that rely on ECDSA or DSA

(e.g. Schnorr [75]). These approaches require the protocol to

store all signatures for aggregation and verification.

Other state-of-the-art BFT systems such as SBFT [33] and

HotStuff [86] also use aggregate or threshold signatures.

However, they use it in a different way. They let the leader

compute the aggregate signature. WebLedger uses a different

approach, as not all replicas are connected to each other,

signatures need to travel accross multiple hops. WebLedger

already aggregates the individual signatures immediately.

This also means that a signature from one replica can be

included multiple times in the aggregate signature.

G0 and G1 are two multiplicitive cyclic groups of prime or-

der 𝑞. H0 : {0, 1}∗ → G0 and H1 : {0, 1}∗ → Z𝑞 are hash

functions viewed as random oracles.

1. Parameters Generation: PGen(𝜅) sets up a bilinear group

(𝑞,G0,G1,G𝑡 , 𝑒, 𝑔0, 𝑔1) as described by [16]. 𝑒 is an efficient

non-degenerating bilinear map 𝑒 : G0 × G1 → G𝑡 . 𝑔0 and
𝑔1 are generators of the groups G0 and G1. It outputs

𝑝𝑎𝑟𝑎𝑚𝑠 ← (𝑞,G0,G1,G𝑡 , 𝑒, 𝑔0, 𝑔1).
2. Key Generation: KGen(𝑝𝑎𝑟𝑎𝑚𝑠) is a probabilistic algo-

rithm that take as input the security 𝑝𝑎𝑟𝑎𝑚𝑠 , generates

𝑠𝑘
$←− Z𝑞 , computes and sets 𝑝𝑘 ← 𝑔𝑠𝑘

1
, and outputs

(𝑠𝑘, 𝑝𝑘).

3. Signing: Sign(𝑠𝑘,𝑚) is a deterministic algorithm that takes

as input a secret key 𝑠𝑘 and a message 𝑚. It computes

𝑡 ← H1 (𝑝𝑘), and outputs 𝜎 ← H0 (𝑚)𝑠𝑘 ·𝑡 ∈ G0.

4. Key Aggregation: KAgg({(𝑝𝑘𝑖 , 𝑟𝑖 )}𝑛𝑖=1) is a deterministic

algorithm that takes as input a set of public key 𝑝𝑘 and

the multiplicity 𝑟 pairs. It computes 𝑡𝑖 ← H1 (𝑝𝑘𝑖 ), and
outputs 𝑎𝑝𝑘 ←∏𝑛

𝑖=1 𝑝𝑘
𝑡𝑖 ·𝑟𝑖
𝑖

.

5. (Multi-)Signature Aggregation: Agg(𝜎1, ..., 𝜎𝑛) is a deter-

ministic algorithm that takes as input 𝑛 signatures. It out-

puts 𝜎 ←∏𝑛
𝑖=1 𝜎𝑖 .

6. Verification: Ver(𝑎𝑝𝑘,𝑚, 𝜎) is a deterministic algorithm

that takes as input aggregated public keys 𝑎𝑝𝑘 ∈ G1, and

the related message𝑚 and signature 𝜎 ∈ G0. It outputs

𝑒 (𝑔1, 𝜎)
?

= 𝑒 (𝑎𝑝𝑘,H0 (𝑚)) .

Figure 4. Formal specification of the BLS signature scheme.

Efficient aggregation. The protocol described in Section 3
performs a considerable number of signature aggregations.

But the standard scheme is vulnerable to rogue public-key

attacks. The state-of-the-art approach [16] to mitigate such

attacks is to compute (𝑡1, ..., 𝑡𝑛) ← H1 (𝑝𝑘1, ..., 𝑝𝑘𝑛) for each
Agg invocation and compute 𝜎 ← ∏𝑛

𝑖=1 𝜎
𝑡𝑖
𝑖
, where 𝑝𝑘𝑖 is

the public key of replica 𝑖 , H1 is a hash function, and 𝜎𝑖 is

a (multi-)signature produced by replica 𝑖 . Although the 𝑡𝑖
values can be cached, the computation of 𝜎 would be costly.

Moreover, Agg does not take as input the same set of public
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keys at different states of a transaction in our consensus pro-

tocol. Therefore, we distribute the computations by moving

the calculations of the 𝑡𝑖 and 𝜎
𝑡𝑖
𝑖
values to the signing par-

ties, and as a result, these computations are performed once.

Now, any replica can run Agg by only computing 𝜎1...𝜎𝑛 .

The security properties of BLS remain intact [16], and we

obtain more efficient aggregations at scale. For the interested

reader, we provide the mathematical background and formal

specification of our optimized BLS scheme in Figure 4.

Aggregation of overlapping signatures. Replicas are re-
quired to aggregate multi-signatures in intermediate states

of the consensus protocol. Figure 2 illustrates an example

of such a situation. Replica 𝐵 receives signature 𝜎𝐴; it com-

putes 𝜎𝐵 ; and it aggregates them as 𝜎 (𝐴,𝐵) . Later on, replica
𝐵 receives 𝜎 (𝐴,𝐶) from replica 𝐶 . Aggregation of 𝜎 (𝐴,𝐵) and
𝜎 (𝐴,𝐶) naturally includes a duplicate signature 𝜎𝐴. The sit-

uation becomes worse when replica 𝐵 wants to aggregate

𝜎 (𝐴,𝐴,𝐶,𝐵) and 𝜎 (𝐴,𝐶,𝐵) , which results in 𝜎 (𝐴,𝐴,𝐴,𝐶,𝐶,𝐵,𝐵) (be-
yond Figure 2). Since each (multi-)signature is an element of

an elliptic curve group, we are not aware of any technique

merely relying on BLS to detect overlapping signatures as

well as aggregating signatures resulting in ones with distinct

public keys. Therefore, we keep extra metadata describing

the multiplicity 𝑟 of each public key. This information is

(de)serialized and sent across the network along with the sig-

natures. We encounter numerous multiplicities at different

stages of the consensus protocol and the data synchroniza-

tion mechanism. This results in many point additions on the

curve. To reduce the performance overhead when key aggre-

gation involves many duplicates, we can use this metadata

to enable a better ordering of the operations.

4.3 Performance optimization tactics for browsers
This section contains four performance optimizations that

are important to be able to host this middleware inside web

browsers at scale.

Polyglot middleware using WebAssembly. WebAssem-

bly [74] is a binary instruction format that addresses the

problem of safe, fast, and portable low-level code on the

Web. Higher-level languages such as C, C++, and Rust can be

compiled to WebAssembly and can be executed in a modern

browser on any platform independent from the underlying

hardware. WebAssembly executes significantly faster than

JavaScript [36], however, it is not as fast as native code [39].

We used WebAssembly for two key components that are

computationally intensive. These components are the hash-

ing component to build the Merkle-tree and the BLS module

for aggregate signatures. They are implemented in the Rust

programming language [53] and compiled to WebAssembly

to run inside a browser. Besides the performance improve-

ment of WebAssembly over JavaScript, using Rust also en-

abled us to make use of well-tested Rust libraries instead of

implementing these components ourselves in JavaScript.

ParallellizationusingWebWorkers. WebWorkers [37]

are separate browser threads, which enable us to run com-

putations off the main thread to keep the User Interface

responsive. The middleware is distributed over four different

threads. The Public interface and P2P Network component

run on the main thread together with the application. Public
interface helps set up the other threads and pass the API-calls
to the Consensus component. P2P Network is also located on

the main thread because WebRTC is not available inside Web

Workers. The other three components: Consensus, Member-
ship and Store, are each located in a separate Web Worker.

This enables long-running computations, for example BLS-

signature verification, to run in a separate thread without

blocking concurrent operations in the other threads.

Caching. Caching is used in several places for perfor-

mance reasons. The most important place is in the Member-
ship component in WebAssembly. While WebAssembly itself

is fast, the boundary between JavaScript and WebAssembly

is not. Function calls between the two environments can only

use numbers directly. Any other data structure has to be se-

rialized to bytes and be allocated a spot in the WebAssembly

memory buffer. In WebAssembly, these bytes can be decoded

to the appropriate Rust data structure. For this reason, all

cryptographic material such as public keys and the private

key are passed to WebAssembly at initialization, avoiding

this costly transfer for subsequent operations. In the Con-
sensus component, all CRDT and Merkle-tree structures are

cached in memory so a costly fetch from disk and decoding

from bytes can be avoided.

Batching of writes for IndexedDB. The last important

optimization concerns IndexedDB [1]. IndexedDB is an in-

browser database for structured data supporting fast reads

and lookups by using indexes. We found that when too many

write requests are sent to IndexedDB, latency significantly

starts to increase up to one second or even more. When one

atomic register is updated, also all intermediate nodes until

the root node of the Merkle-tree are updated. This is due to

the tree-shaped structure of the Merkle-tree. So, one write

somewhere down the tree, leads to a cascading of writes, and

every write causes the root node to be written as well. To

reduce the high latency, we batched all writes to IndexedDB

in-memory in the Store component. If multiple writes for

the same key happen in the same batch, only the last one

is actually executed. On fixed intervals of five seconds, the

whole batch is written to IndexedDB. Since many duplicate

writes are now avoided, the number of writes is reduced

significantly. This solved the problem of high read latency.

As not everything is immediately written to disk, fail-

ure can happen and lead to data loss. For updates received

through the peer-to-peer network, this is no problem as those

updates can be synchronized again later since the Merkle-

tree will detect the missing updates. Local update operations
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by the user on this replica, are immediately written to disk

and bypass the write-batching to avoid data loss.

5 Evaluation
We validated the WebLedger middleware with the loyalty

points use case. The first section presents this validation.

Next, we presents three different benchmarks with different

scales. The first benchmark shows the performance results

in the optimal scenario with no network failure or Byzantine

failures. The second benchmark evaluates the performance

in case of network failures, and in case of Byzantine failures.

The last benchmark measures a detailed performance break-

down of WebLedger to show the bottlenecks in the current

architecture and explain the previous results.

5.1 Validation in the loyalty points use case
The deployment consists of three services: a web application

running in a browser for each merchant, a web server to

serve the static web application files, and a signaling server

to set up WebRTC peer-to-peer connections between the

browsers. The web server is optional. Every merchant can

also store those files themselves and load them from their

local file system. The signaling server is a trusted compo-

nent, however, if trust is not present, you can setup multiple

signaling servers to reduce potential misbehavior.

If we compare this lightweight setup with the infrastruc-

ture requirements for Hyperledger Fabric, we assess that

WebLedger needs two central components and one browser

per merchant. Hyperledger Fabric needs at least one peer

server, one REST server, one certificate authority and two

CouchDB servers per merchant. Merchants at small stores or

farmers’ markets will prefer to use a simple browser-based

web application with a minimal back-end infrastructure.

To have a baseline, we compare WebLedger to two other

existing state-of-the-art systems for BFT consensus: BFT-

SMART [15] and Tendermint [20, 21].

Test setup. To test the performance of the middleware, we

implemented the use case and deployed it on the Azure public

cloud.We used 21 VMs (Azure F8s v2with 8 vCPUs and 16GB

of RAM) with one VM acting as a central server running the

web server and signaling server. The other VMs are running

Chrome browsers inside a Docker container. Each of those

VMs holds one to five browser instances for different scales of

the benchmarks. To simulate a truly mobile environment, the

network is delayed to an average latency of 60 milliseconds

using the Linux tc tool [2], which simulates the latency of a

4G network [68]. To make sure the test results are reliable,

every test is executed 10 times.We implemented two versions

of the middleware with different signature schemes. The

first version uses BLS signatures which supports signature

aggregation as explained in Section 4.2. The other version

uses ECDSA signatures which are aggregated in a set.

We are interested in the time it takes to confirm a transac-

tion, experienced by the browser that submitted the trans-

action. Each transaction is a group of loyalty points being

changed from owner. For example a merchant giving some

loyalty points to a customer or a customer redeeming their

loyalty points with a merchant. We compare the latency, net-

work bandwidth, and disk usage for both implementations

with ECDSA and BLS, with a different number of browsers

and transaction throughputs. We show the 99th percentile la-

tency as all users should experience fast confirmation times,

and not only the average user [24].

5.2 Optimal scenario
In the optimal scenario, every replica is honest and no repli-

cas fail, meaning that the optimistic fast path can be used.

The aggregate signature is verified only at the end, avoiding

costly verifications after every message. As every replica is

honest, this aggregate signature is correct and the new value

can be accepted by all replicas.

Figure 5a shows the 99th percentile latency for different

number of browsers and the different technologies. For the

use case of loyalty points, transactions must be confirmed

fast, as people are waiting at checkout to receive or redeem

loyalty points. The BLS implementation can confirm trans-

actions within 3 seconds, even with a network of hundred

browsers. The ECDSA implementation performs well for

small networks, but needs too much time in the larger net-

works with 80 and 100 replicas. BLS only needs a single

aggregate signature, while ECDSA needs to keep a set with

100 signatures in the largest network we tested.

BFT-SMART can confirm transactions within half a second.

This is because all replicas communicate directly with each

other, whereas both WebLedger and Tendermint use Gossip

and need multiple hops before all replicas are reached. Fur-

thermore, BFT-SMART uses HMAC to sign requests, which

are an order of magnitude faster than the assymmetric sig-

natures used in WebLedger and Tendermint.

Figure 6 shows the bandwidth requirements for all four

technologies. BLS uses always less bandwidth compared to

the ECDSA implementation of WebLedger. In the large scale

scenario with 100 browsers, WebLedger-BLS uses about 1.2

Mbit/s, which is acceptable for a typical mobile network.

Tendermint and WebLedger-ECDSA have a higher network

usage as they need to store the individual signatures, instead

of one aggregate signature using BLS.

Figure 7 shows the disk usage. BLS improves the disk

usage 8 times for the scenario with 100 browsers. Both im-

plementations need less than 5 MB to store 1000 tokens. This

disk usage does not increase over time, as only the current

value and proposals are stored. We do not store a chain of

all transactions that happened so far. This is a big difference

with blockchains that grow in size with every transaction

that is executed and stored in the blockchain. This makes

our approach feasible for resource-constrained devices that
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Figure 7. Average disk usage for WebLedger.

do not have hundreds of gigabytes storage capacity to store

a full blockchain.

5.3 Failure and Byzantine scenario
The same benchmark is repeated with 25% of the replicas

failing during the benchmark. As all systems are Byzantine

fault-tolerant, they should be able to tolerate up to 33% of

the replicas failing or acting Byzantine.

Figure 5b shows the latency in this scenario. WebLedger-

BLS is not impacted much by the failing replicas, and can

still confirm transactions within 4 seconds. The impact on

Tendermint is also small, but latency is doubled to about 10

seconds. BFT-SMART can handle the small scale test with

20 replicas well. But with larger network configurations the

latency grows to more than 20 seconds. It cannot handle the

case with 100 replicas. The latency is increased this much

because a new leader needs to be elected when the old one

fails or disconnects. This process takes some time, during

which no transaction can be committed. WebLedger and

Tendermint do not suffer from this problem. WebLedger

does not have a leader, so the failure of random replica has

little impact. Tendermint does have a leader, but it is rotated

round-robin all the time. This makes the failure of a leader

less severe, as a new one will quickly be elected anyway.

For WebLedger-BLS, we performed an extra benchmark

with Byzantine replicas. In every optimistic round, the Byzan-

tine replicas make the aggregate signature invalid. As the

signature is only verified when a supermajority is reached,

the honest replicas only realize this at the end, and they can-

not find out which replicas are Byzantine. The work done

in the first round is therefore always lost in this scenario.

For the other rounds, the signatures are verified for every

message, so malicious replicas can be detected and excluded

from the network. In these rounds, the Byzantine replicas

keep the signature intact to avoid being detected. However,

they will try to slow down the consensus by not voting them-

selves. The latency in this Byzantine scenario is also shown

in Figure 5b. WebLedger can handle Byzantine replicas very

well for smaller networks, however for networks of size 80

and 100 replicas, latency becomes respectively 19 and 55

seconds. Which is too much for our interactive use cases.

We did not test the effect of Byzantine replicas for BFT-

SMART or Tendermint. As they do not use a fast-path when

everyone is honest, the impact is less. However, if the cur-

rently elected leader happens to be Byzantine, it can delay

the consensus until some timers end and the replicas elect a

new leader [7].
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Figure 8. Total wall-clock time spend on one replica on av-

erage in seconds, including I/O, for 1 transaction. Network

excludes network latency. Merge includes sign, verify, aggre-

gate and hash.

5.4 Breakdown of performance results
To explain the results obtained in the previous two bench-

marks for WebLedger, we performed another benchmark

doing only one update and measuring the time a replica

spends on average on each operation. Figure 8 shows this

performance breakdown over the 6 most important opera-

tions. The network row contains the overhead of sending

a message through WebRTC to a different browser and re-

ceiving this message. This time does not include the latency

of the connection. Most of this time is spent inside the in-

ternals of the browser itself, rather than in the code of the

middleware. Themerge row contains the time spent merging

the state of a remote replica with the local state, it includes

maintaining the Merkle-tree, the merge operation from Fig-

ure 1, as well as the cryptographic operations: sign, verify,

aggregate and hash. The sign, verify, aggregate and hash row

contain exactly what their names say. The aggregate row for

the ECDSA implementation only takes the union of two sets

with signatures, there is no actual cryptography involved.

The numbers do not add up to the results shown previously

as some operations are executed in parallel in a different

WebWorker thread. The times shown are wall-clock times,

so also the time spent waiting on another thread is included.

We can see that the performance characteristics of the two

implementations are different. The classical implementation

using ECDSA is severely limited by the overhead of WebRTC

and processing those messages, rather than the core crypto-

graphy. The BLS implementation on the other hand is limited

by the computational overhead of BLS. The network over-

head takes some time, but as the messages are only a fraction

of the size of those from ECDSA, this overhead is a lot less.

For example with 80 different replicas, an aggregate signa-

ture in BLS only takes up the size of one single signature

and some metadata of a few hundred bytes. An aggregate

signature in ECDSA consists of 80 different signatures, so

it takes up as much size as 80 signatures. The aggregation

step in BLS is quite fast. However, the verification step takes

more time. This is partly because BLS in general is slower

than ECDSA, but also because the WebAssembly implemen-

tation is slower than a real native environment. The ECDSA

implementation uses the built-in WebCrypto [84] libraries

which use the native functions provided by Chrome.

5.5 Conclusion
We have shown that WebLedger can be used for our loyalty

points use case with up to 60 different merchants, even when

some of them are acting maliciously. WebLedger is especially

robust against network and node failures, which are typical

in a mobile setting. WebLedger can confirm transactions

fast, in the order of seconds, without needing a complex

back-end setup or wasting a lot of energy. WebLedger has a

small storage footprint due to its state-based nature. The cur-

rent limitation of WebLedger (with BLS) is the verification

phase that needs to be performed for every new aggregated

signature that is received. When the default operation as-

sumes that there are no malicious replicas being present,

WebLedger can scale to even more replicas, since the fast

path without intermediate verifications can be used.

6 Related work
Several client-side frameworks for data synchronization be-

tween web applications exist: Legion [82], Yjs [64, 65], and

Automerge [43]. They make use of various kinds of Conflict-

free Replicated Data Types (CRDT) [76] to deal with con-

current conflicting operations, and can synchronize data

peer-to-peer. They are easy to set up and only require a

browser and a small peer-to-peer discovery service. How-

ever, they assume trusted operation as the default setting.

None of them can tolerate malicious parties.

Open or permissionless blockchains such as Bitcoin [62]

and Ethereum [22, 85] allow everyone to participate and use

Proof-of-Work (PoW) to reach agreement over the ledger [35].

However, PoW has several flaws [13]. PoW uses a lot of pro-

cessing power and energy [67] and performs poorly in terms

of latency. It assumes a synchronous network to guarantee

safety. When this assumption is violated, temporary forks

can happen in the blockchain as liveness is chosen over safety.

Therefore PoW blockchains do not offer consensus finality,

instead one needs to wait for several consecutive blocks to

be probabilistically certain that a transaction cannot be re-

verted. Blockchains require a lot of storage space, as the full

blockchain typically needs to be stored on every node. The

Bitcoin blockchain for example has a total size of 304 GB

in 2020. Simplified Payment Verification (SPV) mode [62]

for clients can reduce the resource usage, at the cost of de-

centralization. PoW gains its security from the fact that one

needs a lot of CPU power to control the network, which

is too costly for an attacker compared to the revenue for a

successful attack. Other variants of resource consumption

exist such as Proof-of-Space [4] or Proof-of-Storage [5].
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ByzCoin [45] uses PoW for a separate identity chain to

guard against Sybil attacks but uses a BFT protocol to ac-

tually order transactions. ByzCoin makes use of collective

signatures (CoSi) [80] and a balanced tree for the commu-

nication flow. CoSi makes use of aggregate signatures by

constructing a Schnorr multisignature [75]. However, CoSi

needs multiple communication round-trips through the peer-

to-peer network to generate the multi-signature and assumes

a synchronous network.

Tendermint [20, 21], used in the Cosmos blockchain [47],

uses Proof-of-Stake (PoS), where voting power is based on

the amount of cryptocurrency owned by each replica. Be-

cause block times are short, in the order of seconds, there is

a limited number of validators Tendermint can have because

finality needs to be reached for each block. It is also not

resistant to cartel forming, which allows those with a lot of

cryptocurrency to work together to control the network.

Instead of reaching consensus between all the replicas of

the network, Stellar Consensus Protocol [51, 54] uses quorum

slices to reach federated Byzantine agreement in an open

network. Replicas should choose adequate quorum slices for

safety. However, today’s Stellar network is highly centralized

and many replicas use the same few validators. Two failing

validators can make the entire system fail [61].

Other protocols use a randomized approach. Ouroboros [42],

HoneyBadger [60] and BEAT [25] use distributed coin flip-

ping for the consensus. HoneyBadger [60] also uses thresh-

old signatures [77] for censorship resilience. Algorand [32]

uses Verifiable Random Functions [58] to select a random

committee to participate in the next consensus round.

Avalanche [72, 73] uses meta-stability to reach consen-

sus by sampling other replicas without any leader. While

Avalanche is also a lightweight and scalable, leaderless sys-

tem, it need to be able to sample all other validators. The

number of connections one can open in a browser is limited.

Permissioned blockchains such as Hyperledger Fabric [3]

have closed membership and often use a BFT consensus pro-

tocol to order transactions. The first known BFT protocol

is Practical Byzantine Fault-Tolerance (PBFT) [23]. Other

protocols bring improvements to the original PBFT pro-

tocol. Zyzzyva [46] uses speculative execution which im-

proves latency and throughput if there are no Byzantine

replicas. However, its performance drops significantly if this

premise does not hold. 700BFT [6] provides an abstraction

for these BFT algorithms. These protocols are targeting a

small number of replicas deployed on a local area network.

They generally work in two phases: the first phase guaran-

tees proposal uniqueness, and the second phase guarantees

that a new leader can convince replicas to vote for a safe

proposal. HotStuff [86] proposed a three-phase protocol to

reduce complexity and simplify leader replacement. This

makes HotStuff much more scalable. All of these algorithms

use a leader to drive the protocol. When the leader is ma-

licious, performance can degrade quickly [7]. GeoBFT [34]

is a topology-aware and decentralized consensus protocol,

designed for scalability in a geo-distributed setting.

Another approach is to use a trusted hardware compo-

nent [11, 41, 50, 83, 87]. These approaches are faster and less

computationally intensive but require specialized hardware

to be present. Moreover, trusted execution environments

have been broken in the past [44, 49, 81].

There are several proposals to improve the performance

and response time of Hyperledger Fabric. StreamChain [38]

reaches consensus over a stream of transactions instead

of blocks. FabricCRDT [63] uses CRDTs to support con-

current transactions to occur in the same block, using the

built-in conflict resolution of CRDTs to resolve the conflict

automatically. Other approaches also borrow from CRDTs:

PnyxDB [19] supports commuting transactions to be applied

out-of-order. A novel design for gossip in Fabric [12] im-

proves the block propagation latency and bandwidth. While

these improvements make Hyperledger Fabric faster, none

of them try to reduce the infrastructure requirements to be

able to easily set up an untrusted peer-to-peer network.

The Bitcoin Lightning Network [70] or state channels for

Ethereum [56, 59, 69] are off-chain protocols that run on top

of a blockchain. A new state channel between known partic-

ipants is created by interacting with the blockchain. After its

creation, participants can use this channel to execute state

transitions by collectively signing the new state. These trans-

actions do not involve the blockchain and have fast confirma-

tion times and no transaction costs. However, state channels

assume all participants to be always online and honest. If

this assumption is violated, the underlying blockchain needs

to be used to resolve the conflict, or a trusted third party can

be used [55]. WebLedger uses a similar state-transitioning

protocol where only the latest collectively agreed state needs

to be stored. However, WebLedger can tolerate both failing

and malicious replicas, without resorting to a blockchain or

a trusted third party.

7 Conclusion
In this paper, we presented WebLedger. A browser-based

middleware for decentralized, community-driven, web ap-

plications. WebLedger uses an optimistic, leaderless BFT

consensus protocol, combined with a robust and efficient

state-based synchronization protocol based on state-based

CRDTs and Merkle-trees. WebLedger uses an optimized BLS

scheme for efficient computation and storage of signatures. It

supports a client-centric, browser-based, state-based, permis-

sioned ledger with a low infrastructure and storage footprint

for small-scale, citizen-driven, networks. WebLedger offers

consistent and robust confirmation times to achieve final-

ity of transactions in the order of seconds, even in failure

settings and Byzantine environments. In contrast with tradi-

tional blockchains, WebLedger does not store a transaction

log or blockchain, keeping the overall storage footprint small.
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