
OWebSync: A web-based middleware for fluent
and efficient data synchronization of distributed

web clients

Kristof Jannes, Bert Lagaisse, and Wouter Joosen

imec-DistriNet, Dept. of Computer Science, KU Leuven, Belgium
kristof.jannes,bert.lagaisse,wouter.joosen@cs.kuleuven.be

Abstract. A lot of enterprise software services are adopting a fully web-
based architecture for both internal line-of-business applications and for
online customer-facing applications. Although wireless connections are
becoming more ubiquitous and faster, mobile employees and customers
are however not always connected. Nevertheless, continuous operation of
the software services is expected.
This paper presents OWebSync: a web-based middleware framework for
the continuous synchronization of online web clients and web clients that
have been offline for a longer time period. OWebSync implements a fine-
grained data synchronization model and leverages upon Merkle trees and
convergent replicated data types to achieve the required performance
both for online interactive clients, and for resynchronizing clients that
have been offline.
OWebSync is validated and evaluated in two industrial use cases.

Keywords: Data synchronization · Offline web applications.

1 Introduction

Web applications have been the default architecture for many online software
services, both for internal line-of-business applications such as CRM, HR, and
billing, as well as for customer-facing software service delivery. Native fat clients
are being abandoned in favor of browser-based applications. Browser-based ser-
vice delivery fully abstracts the heterogeneity of the clients, and solves the de-
ployment and maintenance problems that come with native applications. Never-
theless, native applications are still being used when rich and highly interactive
GUIs are needed, or when applications need to function offline for a longer time.
The former reason is disappearing more and more as HTML5 and JavaScript are
becoming more and more powerful and even benefit from hardware acceleration.
The latter reason should be disappearing too with the venue of Wifi, 4G and 5G
ubiquitous wireless networks, even in tunnels and airplanes. However, reality is
that connectivity is often missing for several minutes to several hours. Mobile
employees can be working in cellars or tunnels, and customers sometimes want
to use your services while in an airplane.

2 K. Jannes et al.

A lot of native application-specific solutions and browser-plugins exist to
tackle the problem in an ad-hoc solution. For example, a lot of Google web
apps can be used in offline modus. However, there is no generic, fully web-based
middleware solution that can be used by web applications to:

1. support fine-grained and concurrent updates by distributed web clients on
local copies of shared data,

2. operate conflict-free in both online and offline situations,

3. achieve continuous synchronization for online interactive clients and fluent
resynchronization for offline clients.

A lot of distributed NoSQL data systems, e.g. Amazon Dynamo [11], adopt
synchronization mechanisms based on Vector Clocks. This often lead to conflicts
that need application-level resolving. Text-based versioning such as GIT does not
always guarantee consistent data structures after synchronization. Code, XML
or JSON documents can end up malformed and often require user-level resolu-
tion. Operational Transformation [20] approaches are often used for real-time
synchronization (e.g. in Google Docs) but are not resilient against message loss
in case of long-time offline situations [13]. Commutative Conflict-free Replicated
Data Types [19] are also operation-based, but don’t apply transformations to
the operations. As such, the operations are commutative and can arrive and be
applied in a different order. However, this technique also suffers when operations
are lost. State-based Convergent Replicated Data Types [19] are resilient against
message loss, but have often been considered as problematic with regards to the
amount of data that has to be transfered between all distributed entities.

In this paper we present OWebSync, a generic web middleware for browser
based applications, which supports concurrent updates on local copies of shared
data between distributed web clients, and which supports continuous near-realtime
synchronization between online clients. Moreover, the middleware supports flu-
ent resynchronization when clients were offline for a longer time, e.g. in case
of client crashes or server crashes. OWebSync leverages state-based conflict-free
replicated data types to support synchronization between clients and server even
in the case of message loss. Merkle-trees [15] are used to enable more fluent syn-
chronization of state-based CRDTs and limit the amount of data that has to be
transfered. More specifically, OWebSync provides generic, reusable JSON [10]
based data types that web applications can leverage upon to model their appli-
cation data. These data types support fine-grained and conflict free synchroniza-
tion of all items in the JSON documents. Our evaluation shows that all clients
receive updates within the timespan of seconds, even when tens of clients are
editing hundreds of shared data items.

This paper is structured as follows. Section 2 provides two motivating case
studies and then provides the rationale and more background on synchronization
mechanisms such as CRDTs. Section 3 describes the generic, reusable JSON-
based data types of OWebSync. Section 4 presents the deployment and runtime
architecture of OWebSync. Section 5 evaluates performance in online and offline
situations. We discuss related work in Section 6 and conclude in Section 7.

OWebSync 3

2 Motivation, Background and Approach

This section further explains the motivation of both the goal and approach of
the OWebSync middleware. First we present two industrial case studies of online
software services for both mobile employees and customers that often encounter
longer term offline situations. We then motivate our approach of state-based
CRDTs with Merkle-trees and provide background information on Operational
Transformation, Conflict-free Replicated Data Types and Merkle-trees.

Case studies. We started from two industrial case studies from our applied
research projects for the motivation, requirements analysis, and evaluation of
the OWebSync middleware. The first case study is an online software service
from eWorkforce. eWorkforce is a company that provides technicians to install
network devices for different telecom operators at their customers’ premises.
The second company is eDesigners, who offers a web-based design environment
for graphical templates that are applied to mass customer communication. This
section will explain both case studies.

eWorkforce has two kinds of employees that use the online software service:
the helpdesk operators at the office and the technicians on the road. The helpdesk
operators accept customer calls, plan technical intervention jobs and assign them
to a technician. The technicians can check their work plan on a mobile device
and go from customer to customer. They want to see the details of the next
job wherever they are, and need to be able to indicate which materials they
used for a particular job. Since they are always on the road, a stable internet
connection is not always available. Moreover, they often work in complete offline
modus when they work in basements to install certain hardware. Booking all
used materials as they are used is crucial for correct billing afterwards.

eDesigners offers a customer-facing multi-tenant web service to create, edit
and apply graphical templates for mass communication based on the customer’s
company style. Templates can be edited by multiple users at the same time,
even when they are offline. When two users edit the same document, a conflict
occurs when the versions need to be merged. Edits that are independent of
each other should both be applied to the template. For example, one edit can
change the color of an object, another edit the size. When two users edit the
same property of the same object, only one value can be saved. This should be
resolved automatically.

Background, principles and approach. Next to the motivating case studies for
our overall goal of OWebSync, we now describe our motivation and rationale of
the approach. Therefore we first discuss the advantages and problems of state-of-
the-art techniques such as Operational Transformation, commutative operation-
based CRDTs and convergent state-based CRDTs.

Operational Transformation (OT). Operational Transformation [12] is a tech-
nique that is often used to synchronize concurrent edits on a shared document.
For example, two clients can edit the text ‘ABC’ concurrently, where one client
inserts ‘*’ at position 1, and another client deletes the character at position 1.

4 K. Jannes et al.

The former results in ‘A*BC’, the latter in ‘AC’. To achieve the correct state
(‘A*C’), the first client needs to transform the incoming operation of the other
client to a deletion at position 2. This means the operation needs to be trans-
formed to the current local state. The problem is that the transformation of
the incoming operations of other clients on the local current state can get very
complex, and that messages can get lost, or can arrive in the wrong order.

Conflict-free Replicated Data Types (CRDTs). CRDTs [19] are data struc-
tures that guarantee eventual consistency without the need for explicit conflict
handling during synchronization by the application or user. Conflict-free thus
means that conflicts are resolved automatically in a systematic and deterministic
way, such that the application or user doesn’t have to deal with conflicts them-
selves. There are two kinds of CRDTs: operation-based (Commutative Repli-
cated Data Types) and state-based (Convergent Replicated Data Types).

Commutative Replicated Data Types (CmRDTs). CmRDTs make use of op-
erations to reach consistency, just like Operational Transformation (OT). But
the operations in CmRDTs are commutative and can be applied in any order.
This way, there is no central server needed to apply a transformation on the
operations. As with OT, CmRDTs need a reliable message channel so that every
message reaches every replica exactly once [18].

Convergent Replicated Data Types (CvRDTs). CvRDTs are based on the
state of the data type. Updates are propagated to other replicas by sending the
whole state and merging the two CvRDTs. For this merge operation, there is
a monotonic join semi-lattice defined over the states of a CvRDT. This means
that there is a partial order defined over the possible states, and there is a
least-upper-bound operation between two states. The least-upper-bound is the
state that is larger or equal to both states according to the partial order. To
merge two states, the least-upper-bound is computed and the result is the new
state. CvRDTs don’t require anything from the message channel, messages can
get lost without a problem, since the whole state is always communicated. The
main disadvantage is the fact that the state can get quite large, and needs to be
communicated every time.

Merkle-trees. Merkle-trees [15] or hash-trees are used to quickly compare two
large data structures. Each item in a data structure is hashed, and then the
hashes are combined in a hash on top them, often in a binary way by combining
two hashes from a lower level into a single hash at the higher level. This continues
until the root of the tree is created with the top-level hash. Two data structures
can now be compared starting from the two top-level hashes. If the root hashes
match, the data structures are equal. Otherwise the tree can be descended using
the mismatching hashes to find the mismatching items.

To limit the overhead of messages with state exchanges between clients and
server, we adopt Merkle-trees in the data structure to find the items that need
to be synchronized and to minimize state transfer. This data structure is dis-
cussed in Section 3. Together with other architectural performance tactics and
implementation-level optimizations we can achieve fluent interactive synchro-
nization. This is discussed in Section 4.

OWebSync 5

3 Convergent replicated data types with Merkle-trees

In this section we describe the conceptual data model of OWebSync that web
applications will need to use to ensure synchronization by the middleware. The
data model is a Convergent Replicated Data Type (CvRDT) for the efficient
replication of JSON data structures, and applies Merkle-trees to quickly find
data changes.

The CvRDT consist of two specific CvRDTs: a Last-Write-Wins Register
(LWWRegister) [19] and an Observed-Removed Map (ORMap) [19]. The LWWReg-
ister is used to store values, such as strings, numbers and booleans, in the leaves
of the tree. The ORMap is a recursive data structure that represents a map that
can contain other ORMaps or LWWRegisters.

Last-Write-Wins register (LWWRegister). This data structure contains ex-
actly one value (string, number or boolean) together with a timestamp of the
last change to the value. The data structure supports three operations: reading
the value, updating the value and merging an LWWRegister with another one.
The update operations also automatically updates the timestamp. The merging
operation will always result in the value and timestamp of the latest update.
The other value is lost.

Observed-Removed Map (ORMap). The Observed-Removed Map is typically
implemented using an Observed-Removed Set (ORSet) with as contained data
a tuple that contains a key and a value. We add an additional hash of the value
that will be used to construct the Merkle-tree.

An ORSet is constructed with two grow-only sets. A grow-only set is also a
CvRDT representing a set to which one can only add items. Such set can easily
be merged with other grow-only sets by simply creating a union. The ORSet
contains a grow-only set for the added items (observed set) and a grow-only set
for the removed items (removed set).

 timestamp
 value

LWWRegister

 observed : G-Set<id, hash, key, value>
 removed : G-Set<id>

ORMap

 observed : G-Set<id, value>
 removed : G-Set<id>

OR-Set

 observed : G-Set<value>
 removed : G-Set<value>

2P-Set

 items : Set<value>

G-Set

Powered By�Visual Paradigm Community Edition

Fig. 1. Class diagram of the CRDTs that are used, including the CRDTs on which the
ORMap is based. ORMap extends ORSet, which extends a Two-Phase Set (2P-Set).
The 2P-Set contains two Grow-Only Sets (G-Set).

6 K. Jannes et al.

4 Web-based middleware architecture for synchronization

In this section we describe the deployment and execution architecture of the
OWebSync middleware and the synchronization protocol. This middleware ar-
chitecture is key to support the data model and synchronization model described
in the previous section. We also elaborate on a set of key performance optimiza-
tion tactics to achieve continuous synchronization for online interactive clients.

Overall architecture. The middleware architecture is depicted in Figure 2 and
consists of loosely-coupled client and server subsystems. First, the client-tier
middleware API is fully implemented in JavaScript and completely runs in the
browser without any need for add-ins or plugins. The server is a light-weight
process listening for incoming web requests and storing all shared data. The
server is only responsible for data synchronization and does not run application
logic. However, access control on the data is also supported and enforced at the
server. Both the clients and server have a key-value store to make data persistent
on disk. The many clients and server communicate using only web-based HTTP
traffic. All communication messages between client and server are sent and re-
ceived using asynchronous workers inside the client and server subsystems. We
first further elaborate on the client-tier subsystem with the public middleware
API for applications, and then describe the client-server communication protocol
for synchronization in detail.

Browser
Browser

Browser Server

<<component>>
Server

<<component>>
Key/Value-store

Main Thread

<<HTML + JS>>
Application

<<JS>>
Middleware

Worker Thread

<<JS>>
Worker

<<component>>
IndexedDB

Internal

Get/Set

Sync

Public Interface

Sync

Internal

IndexedDB API

Fig. 2. Overall architecture of the OWebSync middleware

Client-tier middleware and API. The public programming API of the middle-
ware is located completely at the client-tier. Web applications are developed as
client-side JavaScript applications that use the following API:

OWebSync 7

– GET(path): Returns a JavaScript Object or primitive value for a given path.
– LISTEN(path, callback): Similar to a GET, but every time the value changes,

the callback is executed.
– SET(path, value): Create or update a value at a given path.

The OWebSync middleware is loaded as a JavaScript library in the client and
the middleware is then available in the global scope of the web page. One can
then load data and edit data using typical JavaScript paths. An example from
the eDesigners case study:

let drawing1 = await OWebSync.get("drawings.drawing1");

drawings.drawing1.object36.color = "#f00";

OWebSync.set("drawings.drawing1", drawing1);

Synchronization protocol. The synchronization protocol between client and server
consists of three key messages, that the client can send to the server and vice
versa:

1. GET(path, hash): the receiver returns the CRDT at a given path if the hash
is different from its own CRDT at the given path.

2. PUSH (path, CRDT): the sender sends the CRDT data structure at a given
path and the receiver will merge it at the given path.

3. REMOVE(path, uuid): removes the CRDT at a given path if the unique
identifier (uuid) of the value is matching the given uuid. As such, a newer
value with a different uuid will not be deleted.

The protocol is initiated by a client, which will traverse the Merkle-tree of the
CRDTs. The synchronization starts with the highest CRDT in the tree. The
client will send a GET message to the server with the given path and hash value
of the CRDT. If the server concludes that the hash of the path matches the
client’s hash, the synchronization stops. All data is consistent at that time.

If the hash does not match, the server returns a PUSH message with the
CRDT that is located at the PATH requested by the client. The client has to
merge the new CRDT with the CRDT at its requested location. This merger
process at the client might detect conflicting children in the tree by comparing
the hashes. The client will then PUSH that child to the server with the CRDT
of the client. The server then needs to merge this CRDT. If a child does not
exist yet, an empty child is created and a GET message is sent to get the value.

The process continues by traversing the tree and exchanges PUSH and GET
messages until the leaf of the tree is reached. The CRDT in this leaf is a register
and can be merged. All parents of this leaf are now updated such that finally the
top-level hash of client and server match. If the top-level hashes do not match,
other updates have been done in the meanwhile, and the process is repeated.

If during a merger process, a child seems to be removed at one side, but not
at the other side, a REMOVE message is sent to the other party. Alternatively,
this additional third message type of REMOVE could be avoided if a PUSH
of the parent would be sent instead. However, the push of a parent with many
children would cause a serious overhead compared to a REMOVE message with
only a path and uuid.

8 K. Jannes et al.

Performance optimization tactics. The protocol leads to many messages between
clients and server. To reduce the chattiness and overhead of the synchronization
protocol between the many clients and server, different optimization tactics are
applied by the client and server.

Message batching. In the basic protocol explained above, all messages are sent
to the other party as soon as a mismatch is detected. This leads to lots of small
messages (GET, PUSH, and REMOVE) being sent out, and as a consequence,
a lot of messages are coming in while still doing the first synchronization. This
results in a lot of duplicated messages and doing a lot of duplicated work on
subtrees. To solve this problem, all messages are grouped in a list and are sent
out in batch after a full pass of the tree has occurred. At the other side, the
messages are processed one by one, and all resulting messages are again grouped
in a list, and then send out after the incoming batch was fully iterated. If no
further messages are resulting from the processing of a batch, an empty list is sent
to the other party. This ends the synchronization. As a result, a lot less messages
are sent between a client and server, and only one synchronization is occurring
at the same time, resulting in no duplicated messages and no duplicated work
on subtrees.

Parallel processing of message batches. Message batching eliminated the par-
allel processing of many small messages that could lead to a lot of duplicated
work on subtrees. However, because it processes the messages in a batch one
by one, there is no more parallel processing at all and the synchronization time
increases significantly. To solve this problem, the messages in one batch are pro-
cessed in parallel.

HTTP websockets. The communication between client and server is initiated
by a single HTTP message for the initial GET operation. All following messages
in the synchronization protocol are sent over WebSockets within the context of
the original HTTP message and connection. As such, a lot of overhead of HTTP
headers and setting up TCP connections can be avoided.

5 Performance evaluation

The performance evaluation will focus on situations where all clients are contin-
uously online, as well as on situations where clients go offline. We will perform
most of the evaluation using the eDesigners case study, as this scenario has the
largest set of shared data and objects between designers. Hence this serves as a
worst case scenario. The eWorkforce case study has less shared data with less
concurrent updates as technicians typically work on their own data island and
the data contains less objects with less frequent changes.

For online situations, we are especially interested in the time it takes to
distribute and apply an update to all other clients that are editing the same
data. For the offline situation we are especially interested in the following failure
scenarios. We assess situations where clients as well as the server can be offline.
During this server disruption the clients continue doing updates on their local
data copy.

OWebSync 9

Benchmark and test setup. Both the clients and the server are deployed as
separate Docker containers on a set of VMs in our OpenStack private cloud. A
VM can hold up to 3 client containers that generate load. A client container
contains a browser which loads the client-side OWebSync middleware from the
server. The middleware server is deployed on a separate VM. The monitoring
server that captures all performance data is also deployed on a separate VM.

We evaluated 9 benchmarks with different parameters regarding the scale of
the tests: 8, 16, or 24 clients performing continuous concurrent updates on 10,
100 or 1000 objects. These objects are fully shared and replicated between the
clients. Each client performs a random write on a shared object every second.
Each test takes about 11 minutes. The first three minutes are used to populate
the database, to perform the initial synchronization, and to execute a minute of
warm-up. Then we measure the performance of 8 minutes of continuous updates.
Each of the 9 benchmarks consists of 100 tests executed sequentially, and each
benchmark thus runs for 1100 minutes.

Performance of continuous online updates. The following performance measure-
ments quantify the statistical division of the time it takes to synchronize all
clients in the case of continuous updates in an online situation. We also evaluate
the progress over time to reach a certain percentage of the clients. This assesses
how fast the first clients are getting an update compared to the last clients, and
how this progresses in between.

For all of the 9 benchmarks we present the median synchronization time
to achieve full synchronization in function of the number of clients (Figure 10)
and in function of the number of objects (Figure 9). From the 9 benchmarks,
we selected 3 of which we present the detailed performance: 1) a small scale
scenario with 8 concurrent writers on 10 shared objects (Figure 6), 2) a medium
scale scenario with 16 concurrent writers on 100 shared objects (Figure 5) and
3) our larger-scale scenario has 24 clients on 1000 shared objects that are all
being edited concurrently (Figure 3).

Figure 4 shows the progress of synchronization over multiple clients, from the
first client that receives the update to the last one. For brevity, we only provide
this graph for the larger-scale scenario, as this has the most clients and objects to
synchronize. As can be seen, there is a continuous, linear progress of the updates,
and the last receivers do not cause major delays in general. However, as can be
seen in the boxplots, during some tests, some updates took up to 4-5 seconds to
achieve full synchronization.

All the benchmarks show consistent results during their 1100 minute run.
The median time to get full synchronization is consistent over all 100 tests, in
each benchmark. This is also clearly visible in the table in Figure 7 with the
average means over all 100 tests in all 9 benchmarks. The standard deviation
on the average mean1 is clearly very limited. For each benchmark, the boxplots
of the 100 tests actually show consistent medians, third quarters and maxima
(Figure 3, 5 and 6).

1 the average of the 100 means of the 100 tests in one benchmark

10 K. Jannes et al.

Tests0

1

2

3

4

5 s
Synchronisation time

Fig. 3. Boxplots of 100 test executions in
the larger-scale benchmark.

0 100 %
0

1

2

3

4 s
Time

Q1

Q3
median

99.9 %

Fig. 4. Progress of synchronization in all
100 tests of the larger-scale benchmark.

Tests
0.0

0.5

1.0

1.5

2.0

Synchronisation time

Fig. 5. Boxplots of 100 test executions in
the medium-scale benchmark.

Tests
0

1

2

3

4
Synchronisation time

Fig. 6. Boxplots of 100 test executions in
the small-scale benchmark

nb 8 clients 16 clients 24 clients

10 0.22 ± 0.02 0.21 ± 0.01 0.38 ± 0.05
100 0.19 ± 0.01 0.21 ± 0.01 0.33 ± 0.03
1000 0.40 ± 0.07 0.80 ± 0.05 0.94 ± 0.01

Fig. 7. For each benchmark, the average
median synchronization time and stan-
dard deviation over 100 tests.

nb 8 clients 16 clients 24 clients

10 0.69 ± 0.05 0.75 ± 0.15 1.36 ± 0.21
100 0.40 ± 0.19 0.49 ± 0.21 1.48 ± 0.81
1000 1.22 ± 0.74 2.50 ± 0.97 2.53 ± 0.81

Fig. 8. For each benchmark, the aver-
age synchronization time of the 99.9 per-
centile and standard deviations.

OWebSync 11

10 100 1000
Objects

0

0.5

1 s
Synchronisation time

8

16

24

Fig. 9. Overview of the median synchro-
nization times for the 9 benchmarks, in
function of the number of shared objects

8 16 24
Clients

0

0.5

1 s
Synchronisation time

10
100

1000

Fig. 10. For the 9 benchmarks, overview
of the median synchronization times in
function of the number of clients

Tests
0

5

10

15

20 s

Synchronisation time

Fig. 11. Boxplots of 100 executions of the
larger-scale performance test with a crash
of a single client in each test.

Tests
0

5

10

15

20 s

Synchronisation time

Fig. 12. Boxplots of 100 executions of
the larger-scale performance test with a
server crash in each test.

60 200 340 480 s
Time

0

5

10

15 s
Synchronisation time

Fig. 13. Synchronization timeline of a
single test with a client crash

60 200 340 480 s
Time

0

5

10

15

20 s
Synchronisation time

Fig. 14. Synchronization timeline of a
single test with a server crash.

12 K. Jannes et al.

For interactive web applications, usability guidelines [17] state that a direct
interaction should occur within 0.1 seconds. Remote response times should typ-
ically be 1 to 2 seconds in average. 3 to 5 seconds is the absolute maximum
before users are annoyed. The user is often leaving the web application after 10
seconds of waiting time.

We start from these numbers to assess the update propagation time between
users in a collaborative interactive online application with continuous updates.
Local edits by a user on the local copy are of course within the 0.1 seconds limit
for direct local interactions. We want to know the waiting time for a user to
receive an update from another online user. These numbers should be achieved
not only for the average user (the mean synchronization time) but also for the
99.9 percentile (i.e. most of the users [11]). Figure 3 and the tables in Figure 7
and 8 show that the average mean for the larger-scale benchmark is well within
1 second. The third quarter is around 1.1 second, and the maximum without
outliers is 1.5 seconds. The average synchronization time of the 99.9 percentile
is at the border line of annoyance with 2.5±0.8s. This is mainly due to the large
number of objects that are shared between the concurrent writers, and not the
number of concurrent writers. The synchronization time for 16 or 24 writers is
very similar. The same applies to 10 or 100 objects. This can also be seen in
Figure 10 and Figure 9.

In summary, over all benchmarks, the waiting time for an update of an online
user was always below 5 seconds, even for the most extreme outliers. For those
outliers, we are at the border line of user annoyance, but never even close the
10 seconds limit of user waiting time.

Failure scenarios. As the second part of this evaluation, we provide the perfor-
mance measurements when a client or server goes offline. In these benchmarks,
we have the same test setup, but in each 8 minute test we let a client or server
crash after 4 minutes for 10 seconds and then restart it. For brevity, and to max-
imize the visibility of the impact, we only present this test for the larger scale
benchmark with 24 clients and 1000 objects. The boxplots of the benchmarks
with 100 tests (Figure 11 and 12) both show consistent results over all 100 tests.
Both the mean synchronization times and the outliers are in the same ranges
over all 100 tests during a 1100 minute benchmark.

In case of a client crash, the average offline time over the 100 tests was
12.502±0.322s. The time to resynchronize the client after the offline period was
2.028 ± 0.184s. The statistical division of the synchronization times of all the
updates by all the clients is displayed in Figure 15. The impact on the synchro-
nization time of other clients was very minimal. The mean synchronization time
was similar to the situation where all clients are online (about 1.005s). Of course
the average synchronization time of the 99.9 percentile is much higher due to
the offline client, as the synchronization time includes the 12 seconds down time.
However, up to the 95 percentile, the synchronization times of updates in this
failure scenario are in line with the fully online scenario.

In case of the server crash, all clients are offline and the average offline time
over all tests was 11.675±0.248s. This timespan includes the restart of the server

OWebSync 13

after the crash. The mean synchronization time over all updates was 1.067s, and
the 95 percentile was still around 1.998s (Figure 15).

After the server restart, the median resynchronization time for all clients was
3.674 ± 0.645s. The 99.9 percentile of the resynchronization times was 6.039 ±
0.652s. Hence, after a server crash, most of the users were resynchronized in
about 6 seconds.

In summary, the resynchronization time in case of a client crash or server
crash is acceptable for interactive online web applications. Moreover, the overall
impact on all clients is minimal as can be seen in the timeline graphs in Figure
13 and 14. After a short peak in synchronization times of updates, mainly during
the crashes, everything quickly turns back to the average synchronization times.

stats client offline server offline

mean 1.005 ± 0.023s 1.067 ± 0.021s
90% 1.403 ± 0.196s 1.553 ± 0.171s
95% 1.739 ± 1.047s 1.998 ± 0.518s
99% 9.684 ± 2.978s 13.371 ± 0.608s
99.9% 14.124 ± 3.159s 17.506 ± 0.634s

Fig. 15. Synchronization times of all updates in the failure scenarios.

6 Related work

The related work consists of three types of work: 1) concepts and techniques such
as CRDTs and Operational Transformation, 2) distributed data systems such
as Dynamo and Cassandra, as well as 3) synchronization frameworks for clients
such as PouchDB and Swarm.js. The concepts and techniques were discussed
in Section 2. In this section we focus on the distributed data systems and on
synchronization frameworks.

Distributed data systems and NoSQL. With the venue of NoSQL systems,
a lot of new storage solutions have appeared that offer eventual consistency
between different distributed nodes, within or even across data centers. Their
focus is often to provide availability of read and write operations over strong
consistency in the context of network partitions. These are typical systems of
which the replicated data copies are stored on multiple servers across or within
data centers, and that support concurrent updates on the different data copies,
even when the nodes are disconnected from each other.

Dynamo [11] for example is a highly-available key-value store developed and
used by Amazon in their data centers. The focus is to support high-availability
of write operations. Applications should always be able to write on the local
copy. In case conflicts occur between different versions (in the case of network
partitions), the reconciliation occurs when the data item is read later. Using
syntactic reconciliation, Dynamo can resolve the conflict between a newer version
and older version if a newer version is clearly derived from the older version. In

14 K. Jannes et al.

case concurrent writes occurred, Dynamo relies on the application to merge the
two versions (semantic reconciliation). Dynamo can thus not merge two versions
of complex objects that are stored as values in the key-value store.

Based on the original Dynamo paper, a lot of other open-source NoSQL
systems have been developed for structured or semi-structured data. Cassan-
dra [2] [14] supports fine-grained versioning of cells in a wide-column store. It
therefore uses timestamps for each row-column cell, and adopts a last-write-
wins strategy to join two cells. CouchDB [3] and MongoDB [4] focus on semi-
structured document storage, typically in a JSON format. CouchDB offers coarse-
grained versioning per document and stores multiple versions of the document.
Applications need to resolve the conflicts between the versions. Moreover, it also
does not support fine-grained conflict detection or merging within two JSON doc-
uments. Riak [6] is a server-side key-value store like Amazon Dynamo, but also
supports more fine-grained data structures such as state-based CRDTs, registers,
counters, sets and maps. It does not support client-side data replicas, Merkle-
trees for synchronization, or long-term offline usage. Antidote [1] is a research
project to develop a geo-replicated database over world-wide data centers. It
adopts operation-based commutative CRDTs for highly-available transactions.
It supports partial replication but assumes continuous online connections as the
default operational situation.

Client-tier JavaScript-libraries for synchronization. A lot of JavaScript frame-
works have appeared to enable synchronization between web browsers and server-
side data systems. PouchDB [5] is a client-side JS library that can replicate data
from and to a CouchDB server. Local data copies are stored in the browser for
offline usage. PouchDB only supports conflict detection and resolution at the
coarse-grained level of a whole document. ShareDB [7] is a client-server frame-
work to synchronize JSON documents and adopts Operational Transformation
as synchronization technique between the different local copies. ShareDB can
thus not be used in offline situations. In case of short network disruptions it
can store the operations on the data in memory and resend them when the
connection restores. The offline operations are lost when the browser session is
closed. Yjs [16, 9] is a JavaScript Framework for synchronizing structured data
and supports maps, arrays, xml and text documents. All data types also use
operation-based CRDTs for synchronization. Swarm.js [8] is a JavaScript client
library for the Swarm database and uses a Replicated Object Notation (RON).
RON is based on operation-based CRDTs with a partially ordered log for syn-
chronization after offline situations. It currently only supports sets and basic
values like string and int.

7 Conclusion

This paper presents a web middleware that supports the fluent synchronization
of both online and offline clients that are concurrently editing shared data sets.
We proposed a JSON-based data model for the web middleware and a supporting

OWebSync 15

synchronization architecture. The solution is resilient for message loss and out-
of-order messages.

Our OWebSync middleware implements a data model that combines state-
based CRDTs with specific enhancements based on Merkle trees. Due to the en-
hancements in our data model and performance tactics in our supporting middle-
ware architecture, we were able to achieve fluent near-realtime synchronization
of online interactive web applications with continuous concurrent updates.

Our benchmarks demonstrate that we were able to scale up to scenarios
with 24 clients concurrently updating 1000 objects while still achieving fluent
interactive synchronization.

References

1. Antidote. http://syncfree.github.io/antidote
2. Apache cassandra. https://cassandra.apache.org
3. Couchdb. https://couchdb.apache.org
4. Mongodb. https://www.mongodb.com/
5. Pouchdb. https://pouchdb.com
6. Riak. http://docs.basho.com/riak/kv
7. Sharedb. https://github.com/share/sharedb
8. Swarm.js. https://github.com/gritzko/swarm
9. Yjs. https://github.com/y-js/yjs

10. Bray, T.: The javascript object notation (json) data interchange format. RFC 7158
(2014), https://www.rfc-editor.org/rfc/rfc7158.txt

11. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: ACM SIGOPS operating systems review. vol. 41, pp.
205–220. ACM (2007). https://doi.org/10.1145/1294261.1294281

12. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD Rec.
18(2), 399–407 (Jun 1989). https://doi.org/10.1145/66926.66963

13. Kumawat, S., Khunteta, A.: A survey on operational transformation algorithms:
Challenges, issues and achievements. International Journal of Computer Applica-
tions 3(12), 30–38 (2010). https://doi.org/10.5120/787-1115

14. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 44(2), 35–40 (2010)

15. Merkle, R.: Method of providing digital signatures
16. Nicolaescu, P., Jahns, K., Derntl, M., Klamma, R.: Yjs: A framework for near real-

time p2p shared editing on arbitrary data types. In: Engineering the Web in the
Big Data Era. pp. 675–678. Springer (2015)

17. Nielsen, J.: Response time limits. Accessed cited 21Aug (2012)
18. Shapiro, M., Perguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data

types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011 - 13th International
Symposium Stabilization, Safety, and Security of Distributed Systems. Lecture
Notes in Computer Science, vol. 6976, pp. 386–400. Springer (Oct 2011)

19. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
convergent and commutative replicated data types. Research Report RR-7506 (Jan
2011), https://hal.inria.fr/inria-00555588

20. Sun, C., Ellis, C.: Operational transformation in real-time group editors: issues,
algorithms, and achievements. In: Proceedings of the 1998 ACM conference on
Computer supported cooperative work. pp. 59–68. CSCW ’98, ACM (1998)

