
ThunQ: A Distributed and Deep Authorization
Middleware for Early and Lazy Policy

Enforcement in Microservice Applications

Anonymous Authors

No Institute Given

Abstract. Online software services are often designed as multi-tenant,
API-based, microservice architectures. However, sharing service instances
and storing sensitive data in a shared data store causes significant secu-
rity risks. Application-level access control plays a key role in mitigating
this risk by preventing unauthorized access to the application and data.
Moreover, a microservice architecture introduces new challenges for ac-
cess control on online services, as both the application logic and data
are highly distributed. First, unauthorized requests should be denied as
soon as possible, preferably at the facade API. Second, sensitive data
should stay in the context of its microservice during policy evaluation.
Third, the set of policies enforced on a single application request should
be consistent for the entire distributed control flow.
To solve these challenges, we present ThunQ, a distributed authorization
middleware that enforces access control both early at the facade API,
as well as lazily by postponing access decisions to the appropriate data
context. To achieve this, ThunQ leverages two techniques called partial
evaluation and query rewriting, which support policy enforcement both
at the facade API, as well as deep in the data tier.
We implemented and open-sourced ThunQ as a set of reusable compo-
nents for the Spring Cloud and Data ecosystem. Experimental results in
an application case study show that ThunQ can efficiently enforce access
control in microservice applications, with acceptable increases in latency
as the number of tenants and access rules grow.

1 Introduction

Contemporary online services often provide a customer-facing API and adopt
an internal architecture based on application-level multi-tenancy and microser-
vices. Application-level multi-tenancy [7], as illustrated in Fig. 1, benefits from
economies of scale by sharing resources between the tenants, such as the ap-
plication and database. However, storing sensitive tenant data poses significant
security risks. Application-level access control [25] is a key security technique
that mitigates these risks by enforcing security policies at the application level to
block unauthorized access to resources. Moreover, multi-tenant applications re-
quire that both the application provider and tenants can specify security policies.
In particular, the provider specifies the basic security policies for the platform,

Shared Presentation Tier

Shared Business Tier

Shared Data Tier

Tenants

(a)

API Gateway

µService µService µService

DB DB DB

Tenants

(b)

API Gateway

µService

DB DB DB

Policy Engine

Gatekeeper

Modifier
µService
Modifier

µService
Modifier

Tenants

(c)

Fig. 1. Overview of application-level multi-tenancy (a) for both microservice applica-
tions (b) and applications with ThunQ (c). ThunQ’s components are shown in green.

while the tenants can provide additional policies that further restrict access by
their end-users to comply with corporate security policies. For example a tenant
policy may state that: “An insurance company employee can only view insurance
documents of customers that are assigned to the employee.”

Supporting tenant specific policies requires an appropriate level of modular-
ity, separation of concerns and adaptation of the related software artefacts [5].
While single-tenant applications can embed the access control logic directly in
the database query to enforce fine-grained access control, it is no longer feasible
for multi-tenant applications with custom security policies per tenant. Custom
policies require a more flexible approach where policies can be updated at run-
time, as new tenants are continuously added to the application.

A frequently used architectural pattern to realize multi-tenant applications
are microservices [15]. Microservice applications often adopt the API gateway [24]
and the database-per-service [24] pattern as shown in Fig. 1b. The distribution of
application logic and data in multi-tenant microservice applications introduces
the following new challenges for access control in such applications:

1. Unauthorized requests should be denied as soon as possible (ASAP), such
that unauthorized resource usage and control flows in the distributed mi-
croservice application are minimized.

2. Sensitive data should stay in the context of its microservice during policy
evaluation, i.e. data from the data tier should not flow to the API gateway
when evaluating security policies.

3. The set of policies enforced on a single application request should be con-
sistent for the entire distributed control flow, as policies are no longer only
enforced at the facade API but throughout the entire application.

Existing work on application-level access control [27, 25] and API gate-
ways [22, 30] aims to enforce access control ASAP, resulting in a permit or deny.
However, these solutions require that sensitive data is brought outside of its

microservice context. Other related work focuses on enforcing access control in
application databases [16, 2]. These solutions aim to restrict access by enforcing
fine-grained access control on the data records by either rewriting the origi-
nal database query [2], defining authorization views [16] or by filtering database
records after retrieving them from the database [13]. However, securing database
access is only a part of the challenges to enforce a consistent set of access control
policies over a large number of microservices.

To address the challenges and shortcomings above, we present ThunQ, a
distributed authorization middleware for multi-tenant microservice applications
designed to efficiently and consistently enforce a set of access control policies on
distributed application services and data. ThunQ enforces access control policies
early in the distributed control flow, as well as deep down in the data tier.
ThunQ achieves this by adding the gatekeeper, policy engine and query modifier
components to the generic microservice architecture as shown in Fig. 1c. The
gatekeeper and policy engine use partial policy evaluation [18] to create thunks
that are piggybacked on the application request. The thunks are then used by
the query modifier to enforce access control policies deep in the data tier.

We implemented and open-sourced ThunQ as a set of reusable components
for the Spring Cloud and Data ecosystem. Our evaluation shows that ThunQ per-
forms notably better than state-of-practice postfiltering approaches. Moreover,
ThunQ’s overhead is largely independent of the number of application tenants
and the complexity of the tenant specific policies.

The remainder of this text is structured as follows. Section 2 presents the
motivational use case and provides the reader with background on access control
and ThunQ’s supporting technologies. Section 3 presents the architecture and
the security model of the ThunQ middleware. Section 4 discusses the evaluation
and results. Section 5 discusses related work and Section 6 concludes this work.

2 Motivational Use Case and Background

This section presents the motivation and background for ThunQ. We start with
presenting e-insurance, an anonymized industrial case study of a multi-tenant
insurance brokering platform with a microservice architecture and API-based
online service offering. Next, we discuss background on access control models
and ThunQ’s enabling technologies.

The E-Insurance Case Study. In the financial industry, insurance companies or
insurers do not always sell their insurance products directly to end customers.
Instead, they employ intermediaries, called insurance brokers, to bring their
products to the customer. Brokers negotiate insurance contracts with the cus-
tomers and take care of the paperwork related to the contract. Furthermore,
customers should have access to information regarding their insurance products,
such as the current balance of their life insurance account. As shown in Fig. 2,
e-insurance integrates insurers, brokers, and customers into a single platform
that shares their insurance documents. E-insurance is responsible for storing the

Insurance Customer

Insurance Broker
Search

eInsurance

Insurance Company

Search

Broker of
Tenant of

Tenant of

Broker for

Insured by

User ofStorage

Protection

Upload
Search

Fig. 2. Participants of the e-insurance application.

insurance contracts and their related documents, as well as offering advanced
search operations on stored documents. However, as the contents of the insur-
ance documents are sensitive, the results of the search operations should only
include the information which the user is authorized to view.

Security Analysis. Ensuring the confidentiality of the insurance documents is
the primary security goal of e-insurance. To achieve confidentiality, e-insurance
must restrict access to only those users who are authorized to access a given doc-
ument. Whether or not a user is authorized to access a document is determined
by security policies. E-insurance defines two sets of policies: platform policies
which are specified by e-insurance itself, and tenant policies, which are specified
by the tenants to further restrict access by their end-users. Next, we provide a
sample of possible security policies.

P1. (platform) Brokers can only view documents assigned to them.
P2. (platform) Customers can only view documents that belong to them.
P3. (broker) Only senior employees can view documents worth over $100k.
P4. (insurer) Employees can only view the documents assigned to them.
P5. (insurer) Employees can only view documents during working hours.

Challenges. Given the discussion above, we can identify the following chal-
lenges for e-insurance. First, the application must guarantee the confidentiality
of insurance documents by enforcing both platform and tenant security policies.
Second, e-insurance must offer the performance necessary to support numerous
tenants and documents. Searching documents should be fast even as the number
of tenants and documents increases. Finally, the set of policies applied to a single
application request should be consistent for the entire distributed control flow.

Background. Access control models are models that determine which subjects,
such as users and processes, are authorized to access a given object, such as files
and other resources. The choice of access control model has a significant impact
on the kind of security policies that can be expressed. Examples of access con-
trol models include Lattice Based Access Control [19] and Role Based Access
Control [20]. This work focuses on Attribute-Based Access Control (ABAC) [10]
in combination with Policy-Based Access Control (PBAC) [17]. ABAC models
access rights by assigning attributes to the subjects and objects. ABAC makes
access decisions dynamically, based on the assigned attributes and the environ-
ment, such as location and time. PBAC, on the other hand, makes authorization

decisions based on access control policies. These policies are evaluated by a pol-
icy engine that uses an access control model, such as the attributes and context
assigned by the ABAC model, to reach an authorization decision.

The separation of concerns between security policies and the mechanism to
enforce them is a key principle in secure software engineering [5]. PBAC [17]
decouples policy from mechanism by using policy engines to evaluate access con-
trol policies written in access control policy languages. The Open Policy Agent
(OPA) [12] is a policy engine that supports the Rego [14] policy language for
writing policies. Rego policies use the attributes provided by the authorization
request, as well as the access control model stored by OPA. OPA supports both
full and partial evaluation [18] of access control policies. Partial evaluation re-
duces a given policy by substituting the known variables in the policy and eval-
uating the involved expressions. The result of a partial evaluation is a reduced
version of the original policy that only contains unknown variables. We further
refer to the reduced version of the policy as the residual policy.

The OASIS eXtensible Access Control Markup Language (XACML) [27] is
an industry standard for access control. XACML provides a specification for the
XACML policy language and a reference architecture for authorization systems.
XACML combines PBAC and ABAC, using XML documents to specify security
policies. The XACML reference architecture contains the following components:
(i) a Policy Enforcement Point (PEP), which intercepts incoming application
requests, (ii) a Policy Administration Point (PAP), that manages the system’s
policies, (iii) a Policy Information Point (PIP), that stores the access control
attributes, and (iv) a Policy Decision Point (PDP), which takes authorization
decisions based on the context provided by the PAP and PIP.

3 ThunQ Middleware

This section presents ThunQ, a distributed authorization middleware for multi-
tenant microservice applications. ThunQ is designed to efficiently enforce a con-
sistent set of access control policies on distributed application services and data.
ThunQ combines partial policy evaluation [18] and query rewriting [1, 2] to en-
force access control policies both early and lazily. Early enforcement denies unau-
thorized requests as soon as possible, while lazy enforcement pushes access deci-
sions further down the distributed control flow. Next, we define ThunQ’s security
model, followed by a description of the architecture and its key elements.

Security Model. Fig. 1b depicts the system model for applications supported
by ThunQ. ThunQ assumes that all application requests pass through an API
gateway [24], which is a facade for the services in the business tier. Microservices
in the business tier execute the actual business logic of the application and can
call other microservices. Additionally, the services in the business tier rely on the
databases in the data tier for persistence. ThunQ supports dedicated databases
per service, as well as a single database that is shared between microservices.
Given this system model, ThunQ makes the following trust assumptions.

A1 All services shown in Fig. 1b are trusted and operate correctly.
A2 Policies defined by the platform’s security administrators are correct, mean-
ing that they enforce the intended security policies.
A3 Tenant policies do not impact existing security properties of the system, i.e.
policies are defined by the provider’s security consultant after a requirements
analysis of the tenant.
A4 Security administrators are trusted, i.e. there is no insider threat caused by
the security staff.

The primary security goal of ThunQ is to restrict access to the distributed ap-
plication logic and data by enforcing platform and tenant policies. First, ThunQ
should deny unauthorized requests as soon as possible. Second, ThunQ should
enable the confidentiality of application data by enforcing the access control
policies on individual data records deep in the data tier. ThunQ only achieves
these goals when the following assumptions about the attacker hold.

A5 An attacker can only interact with the system through the APIs provided
by the platform.
A6 An attacker cannot impersonate any other user.
A7 The attacker has no access to side-channels in the communication between
the system and the attacker.

ThunQ’s Overall Architecture. The security architecture of ThunQ is shown in
Fig. 3. ThunQ adds the following components to realize its security goals. First,
ThunQ adds the gatekeeper to the API gateway. The gatekeeper performs autho-
rization checks and piggybacks the thunks on the application request. Second,
ThunQ transparently adds a query modifier to the microservices. The modifier
intercepts database queries from the application and rewrites them to enforce
access control policies. Next, we discuss the application request flow with dis-
tributed policy evaluation, followed ThunQ’s core architectural elements.

Distributed Policy Evaluation. Policy evaluation in ThunQ is distributed, early
and lazy. Evaluation is distributed, as ThunQ evaluates policies at different
points in the microservice application, early, as unauthorized requests are denied
ASAP by partial evaluation, and lazy, as ThunQ postpones access decisions by
piggybacking the residual policies to the appropriate data context. More specif-
ically, policy evaluation in ThunQ starts at the API gateway where incoming
application requests are intercepted by the gatekeeper (1). The gatekeeper then
inspects the request and extracts any information regarding the subject. Next,
the gatekeeper selects the policies applicable to the request and calls the policy
engine with the subject information and the selected policies as arguments (2).
The policy engine then partially evaluates the policies and returns the residual
policies to the gatekeeper (3). The gatekeeper transforms the residual policies
into a thunk and attaches the thunk to the application request. Alternatively,
the policy engine returns a deny, in which case the gateway blocks the request.

Next, the API gateway forwards the request to the relevant microservice
(4.1). The microservice then handles the request either by querying the database

API Gateway µService 1

Policy Engine

Gatekeeper Query Modifier

DB

DB
µService 2

Query Modifier

µService N

Query Modifier DB
1 2 3 4.1 5.1 6.1

7.N

4.N

7.2

5.N

6.N

6.2

5.2

4.2
7.18

Fig. 3. Security architecture. ThunQ’s components are shown in green.

API Gateway

Gatekeeper

Fi
lte

r 1

Policy Engine

Partial
Evaluation

PEP RTP

Fi
lte

r N

µService

Application

ORM Middleware
DB Drivers

Data Model

Query Modifier

DB

(a) Components

Data Model ORM Modifier

QMM

DB

1
2

3
4

5

6

(b) Query execution flow

Fig. 4. Detailed view of ThunQ’s interactions with the application components.

(5.1 - 6.1) or by calling other microservices and piggybacking the thunk (4.x -
7.x). Each query made by the application gets intercepted by the query modifier,
where the query gets rewritten to enforce the access control policies before being
passed to the database (5.1). The result of the rewritten query is then sent back
to the application (6.1). After the data is retrieved, the application can perform
other operations, eventually finishing the request and replying to the caller (7.1).
Eventually, the API gateway receives the response and forwards it to the client
(8). Note that the same rewriting procedure (5.x - 6.x) is applied when the
service calls other microservices to handle the request.

We next discuss the core architectural elements of the ThunQ middleware.
The ThunQ middleware consists of two main components the gatekeeper and the
query modifier. These components and a policy engine are added transparently
to the microservice application as shown in Fig. 4.

Gatekeeper. The gatekeeper enforces the access control policies on the requests
both early and lazily. As depicted in Fig. 4a, the gatekeeper is attached to the
API gateway as a filter component that intercepts all incoming application re-
quests. The gatekeeper can be further broken down into the Policy Enforcement
Point or PEP, and the Request Transformation Point or RTP. The PEP is a
modified version of a XACML PEP [27] and is responsible for sending requests
for partial policy evaluation to the policy engine. The policy engine responds

1 allow {
2 user.tenant ==" insurer"
3 doc.tenant_id ==user.tenant_id
4 user.role ==" account_manager"
5 doc.employee_id ==user.id
6 }

allow {
doc.tenant_id ==67
doc.employee_id ==42

}

Fig. 5. Example policy (left) and the residual policy after partial evaluation (right).

with either a set of residual policies or a deny. In the case of a deny, the PEP
blocks the application request, denying the request early. Alternatively, the pol-
icy engine responds with a residual policy, in which case the PEP sends the
residual policies to the RTP, which transforms the residual policies into Boolean
expressions and adds the expressions to the thunk. The RTP is a new component
in the XACML dataflow that is responsible for augmenting application requests,
in particular by attaching a thunk for lazy enforcement.

Fig. 5 shows an example of partial policy evaluation at the gateway. The
policy consists of rules which are defined by the provider at lines 2 and 3, as well
as by the tenant at lines 4 and 5. Note that all subject attributes are available
at the gateway such that lines 2 and 4 can be evaluated and, if necessary, denied
early. This while lines 3 and 5 must be evaluated lazily in the data tier, as the
attributes of doc are not accessible from the current security context.

We realized ThunQ’s gatekeeper as a gateway filter instance for Spring Cloud
Gateway [22]. However, the concept of the gatekeeper is more general and is not
limited to this specific software implementation. The policy engine is provided
by Open Policy Agent (OPA) [12], as it supports partial policy evaluation.

Thunks. A thunk is the key data structure that enables lazy and consistent policy
evaluation in a distributed control flow. Thunks are created by the RTP which
transforms the residual policies forwarded by the PEP into Boolean expressions.
These expressions are added to a thunk by the RTP and piggybacked on the
request. By piggybacking the thunks, the residual policies are able to travel
together with distributed control flow, where they can be used by other ThunQ
components to enforce fine-grained access control policies deep in the data tier.
As shown in Fig. 6, a thunk is a collection of URL path selectors mapped to a
Boolean expression. The selectors are used by the query modifier to determine
which residual policies are relevant for the intercepted database query. Note that
each application request is processed with a consistent set of policies, as the same
thunk is re-used for the entire the distributed control flow.

Query Modifier. The query modifier rewrites database queries such that the
queries enforce access control policies on individual data records. Note that the
query modifier only augments search queries since these operate on large result
sets. As shown in Fig. 4a, the query modifier is attached to the application as a
plugin for the Object Relational Mapper(ORM) middleware. ORMs often provide
hooks that enable third-party extensions to modify database queries through the
query meta-model (QMM).

{
"/ accountStates /*":" doc.tenant_id =67 && doc.employee_id =42",
"/ hospitalBills /*": <BoolExpr#2>,
"/*": <BoolExpr#3>

}

Fig. 6. Example of a thunk encoding the partial policy of Fig. 5 and others.

SELECT *
FROM account_states

SELECT *
FROM account_states
WHERE tenant_id =67 AND employee_id =42

AND <BoolExpr#3>

Fig. 7. Example of query rewriting by the query modifier. The original query on the
left is rewritten using the thunk in Fig. 6 with /accountStates/all as request path.

To rewrite queries, the query modifier must first determine the relevant resid-
ual policies to enforce. These policies are encoded as Boolean expressions in the
thunks that are piggybacked on the application requests. The relevant Boolean
expressions are selected by matching the URL path selectors of the thunk against
the application request path. The matching expressions are then joined using a
conjunction to create a Boolean expression that encodes all the matched resid-
ual policies at once. This expression is then woven into the meta-model of the
database query by adding the expression to the predicate of the query’s model.
The modified query then gets further processed by the ORM middleware be-
fore it is sent to the database. The result of the query then is sent back to the
ORM without passing through the modifier. An example of the effect of query
rewriting on a SQL query is illustrated in Fig. 7.

Fig. 4b shows the flow of a database query in detail. First, the application
invokes a search method on the data model (1). Next, the data model contacts
the ORM middleware (2) which creates a query meta-model that corresponds
to the method call (3). This meta-model is an internal representation of the
query that the ORM will map later to a database specific query. Next, the ORM
passes the meta-model to the query modifier (4), which rewrites the query as
described earlier using the meta-model (5). After calling the modifier, the ORM
instantiates the actual database query using the modified meta-model (6) and
returns the result back to the data model. ThunQ’s query modifier was realized
as a component for the Spring Data [23] ORM middleware. The query modifier
utilizes the Querydsl [26] query meta-model to rewrite database queries.

4 Evaluation

This section discusses the evaluation of the ThunQ middleware with a key focus
on the performance overhead of the middleware solution. We compare ThunQ
against two alternative approaches for fine-grained access control in the data tier,
namely postfiltering [13] and hand-crafted queries. Postfiltering enforces access

control policies on data queries by checking each record in the result set against
a policy engine. Hand-crafted queries, on the other hand, encode the access
control policies directly in the application queries. Although the last approach
is impractical for multi-tenant applications, it represents the best-case scenario
for query-based approaches to enforce fine-grained access control, as it doesn’t
have the overhead of ThunQ’s middleware components. The evaluation aims to
answer the following questions related to multi-tenancy and performance:

Q1 What is the impact of the properties of the enforced policies on the latency?
As tenants specify policies that further restrict access by their end-users, it
decreases the number of records included in the results. Also, adding policies
can increase the number of attributes required for evaluation.
Q2 What is the impact on end-to-end latency when the number of tenants
grows? As microservice applications are very sensitive to increases in latency,
the overhead of ThunQ should not put limitations on the number of tenants.

Evaluation Setup. All experiments were performed on a proof-of-concept appli-
cation (PoC) that is based on the e-insurance case study discussed in Section 2.
The PoC was deployed in an AKS Kubernetes cluster in the Microsoft Azure
public cloud. The Kubernetes control plane was hosted on a single Standard B2s
VM with 2 CPUs and 4GiB of memory, while the PoC runs inside a node pool
consisting of 3 Standard D4as v4 VMs with 4 CPUs and 16GiB of memory. To
simulate application users, we used the Locust [4] load generation tool.

The PoC consists of the following services: an API gateway, an account-
state service, a datastore, and an IAM system. The API gateway is an instance
of Spring Cloud Gateway [22] with an additional gatekeeper filter as discussed
in Section 3. The account-state service handles statements of account balances
generated by life insurances. The service is realized a Spring Boot [21] application
augmented with the query modifier from Section 3. Furthermore, the datastore
is an instance of Azure SQL and the IAM system is provided by Keycloak [11].

Q1. We first investigate the impact of two policy properties called policy selec-
tivity and attribute count. Policy selectivity is the ratio between the number of
data records still included after applying the policy to the result set and the size
of the original result set. Policies with low values for selectivity are called selec-
tive, as only a small portion of the original result set is included. Policies with
high selectivity values are called permissive as more records remain included.
The attribute count of a policy, on the other hand, defines how many attributes
are required by a policy for lazy evaluation.

We configured the experiments as follows. Clients send requests through the
API gateway to fetch data from the account-state service, which has a database
with 1 million records. Application requests are paginated and retrieve only
the first 50 accessible records that satisfy the access control policies. The access
control policies in both scenarios were synthetically generated to show the impact
of the different policy properties. The policies for the experiments with varying
policy selectivity only have a single attribute, while the experiments with varying
attribute count have policies with a selectivity of 10%

0.2

0.4

0.6

0

0.8 s
Latency ↑ 63 s ↑ 4.4 s

0.01 0.1 1 10 100
Selectivity

ThunQ Postfilter Hand-crafted

(a) Average end-to-end latency

Selectivity

0.01

0.1

1

10

100

25 50 750 100%
Contribution to latency

OPA Service
Routing Query

(b) Breakdown of ThunQ latency

Fig. 8. Latency in function of policy selectivity.

0.2

0.4

0.6

0

0.8 s
Latency

1 5 15 25

Attributes

ThunQ Postfilter Hand-crafted

(a) Average end-to-end latency

Attributes

1

5

15

25

25 50 750 100%
Contribution to latency

OPA Service
Routing Query

(b) Breakdown of ThunQ latency

Fig. 9. Latency in function of policy attribute count.

Impact of Policy Selectivity. Fig. 8a shows the impact of policy selectivity on
the end-to-end latency. For ThunQ and hand-crafted queries, latencies are largely
unaffected by policy selectivity, with only a minor increase for highly selective
policies. In addition, the breakdown of the ThunQ’s request latency shown in
Fig. 8b, indicates that ThunQ’s latency is dominated by the database query. The
results for postfiltering show low latencies for policies with selectivity between
10 and 100%. This is a consequence of paged requests, as filling a page requires
that only a limited number of records have to be checked against the policy
engine. In contrast, highly selective policies have high latencies. The increase in
selectivity means that more database records need to be checked by the policy
engine before a single page can be filled, in turn increasing the overhead of the
postfilter and the overall latency. A final observation concerns the results for
policies with a selectivity of 100%. In this case, postfiltering outperforms both
ThunQ and hand-crafted queries. This is caused by the way Spring Data handles
request paging for ThunQ and hand-crafted queries.

Impact of Attribute Count. Fig. 9 shows the relation between the number
of attributes used in the lazy evaluation of a policy and the end-to-end request

0.2

0.4

0.6

0

0.8 s
Latency ↑ 4 s ↑ 46 s

1 10 100 1000

Tenants

ThunQ Postfilter Hand-crafted

(a) Average end-to-end latency

Tenants

1

10

100

1000

25 50 750 100%
Contribution to latency

OPA Service
Routing Query

(b) Breakdown of ThunQ latency

Fig. 10. Latency in function of the number of tenants.

latency for policies with a 10% selectivity. All three fine-grained access control
methods show a linear increase in latency for higher attribute counts. Although
postfiltering initially performs worse than the other techniques, its slope is less
steep compared to ThunQ or hand-crafted queries. Consequently it matches or
outperforms the other solutions for higher attribute counts. The steeper slope
for both ThunQ and hand-crafted queries can be explained by a combination
of the extra work required to check extra attributes in the query and request
pagination in Spring Data, which generates extra count queries.

Q2. Next, we investigate the impact of the number of tenants on the end-to-end
latency. We increased the number of tenants by adding brokers that are each
assigned 1000 documents. We also enforced the access policy that“A broker can
only view the documents that are assigned to the broker”. Adding new brokers
impacts two dimensions of the system. First, The size of the database increases,
as each broker is assigned a fixed number of records. Second, the access control
policy becomes more selective, as the ratio between the records that the broker
is authorized to view and the total number of records decreases. As before,
application requests are paged with 50 records per page.

Fig. 10a shows the impact of the number of brokers in the system on the end-
to-end latency. ThunQ closely follows the performance of hand-crafted queries,
with the latency of both techniques increasing for a larger number of tenants. As
shown earlier in Q1, policy selectivity only has a limited impact on the latency
of either fine-grained access control systems. This implies that the increase in
latency can mostly be attributed to the increase in database size. The latency of
the postfilter increases sharply once the system exceeds 10 tenants. This increase
is mostly likely caused by the increase in policy selectivity. The behavior of the
postfilter in Fig. 8a confirms this observation.

The performance breakdown of ThunQ’s end-to-end latency in Fig. 10b shows
that the end-to-end latency is dominated by the database operations of the
account-state service. This implies that relative overhead of ThunQ decreases as

the number of tenants increases, which makes ThunQ better suited to protect
applications with larger databases.

Discussion. Our results indicate that the impact of policy selectivity, attribute
count, and the number of tenants on the performance of ThunQ is similar to the
impact of these parameters on the performance of hand-crafted queries. How-
ever, postfiltering outperforms both approaches in scenarios where policies are
permissive and have a high attribute count. Nonetheless, ThunQ exhibits better
performance characteristics for multi-tenant applications, such as e-insurance,
that have to support numerous tenants with highly selective policies while still
offering the flexibility required by policy customization. We also did not consider
the use of database indexes, these indexes exploit extra domain knowledge and
might greatly enhance ThunQ’s performance.

5 Related Work

We briefly introduced related work on access control in Section 2. Next, we
discuss the remainder of related work on access control.

Fine-Grained Access Control (FGAC) [16] enforces access control policies
on individual database records by defining a set of authorization views that
restrict access to the database. Although FGAC scales well to large result sets,
it has the following problems. First, FGAC defines the authorization views in
the database’s native query language, which breaks the separation of concerns
between security administration and application development. Second, FGAC
does represent each subject by a separate database user, which does not scale
well a large number of users. Additionally, representing subjects by database
users is problematic for multi-tenant applications, as these applications often
integrate with the IAM system of their tenants.

Bouncer [13] aims to scale fine-grained access control with respect to large
groups of users. It does so by inserting an enforcement point between the database
and the application. The enforcement point first performs an authorization check
when the query arrives at the database. Next, bouncer uses postfiltering to ex-
clude any unauthorized database records from the query response. However,
postfiltering does not scale well for large result sets [2].

Sequoia [2] combines the strengths of FGAC and Bouncer by rewriting database
queries based on XACML policies. This results in low latency enforcement with
the ability to enforce expressive policies for a large number of users. However,
Sequoia does not provide an end-to-end solution for access control in applications
with distributed application logic and data, such as multi-tenant microservice
applications. Moreover, Sequoia instances receive policy updates individually,
such that there are no guarantees that multiple Sequoia instances enforce a con-
sistent set of policies on a single distributed control flow.

OAuth [8] uses access tokens that contain user attributes for authorization.
Like access tokens, thunks are attached to the application request. However,
unlike access tokens, thunks contain residual policies instead of attributes.

Prior work on restricting access to sensitive data in service-oriented comput-
ing [6] uses secure proxies to protect services. However, access decisions of secure
proxies are coarse-grained, as they permit or deny entire application requests.

In addition to application data, user attributes also require adequate protec-
tion. The TSAP [29] system exposes attributes to resource providers based on
the sensitivity level of the attribute and the trust level of the resource provider.

While ABAC policies offer many advantages, it can be challenging to migrate
to ABAC from a legacy access control system, such as RBAC [20] or Access
Control Lists [9]. Policy mining [28] is an automated solution that transforms
the legacy access control model to ABAC policies and attributes.

6 Conclusion and Future Work

This work introduced ThunQ, a distributed authorization middleware for multi-
tenant microservice applications. ThunQ ensures data confidentiality by denying
unauthorized requests as soon as possible and enforcing security policies lazily.

ThunQ uses partial policy evaluation to make access control decisions early
at the API gateway and piggybacks the resulting residual policies as a thunk on
the application request. This scheme moves the policies close to the data that
is required to evaluate them, keeping the sensitive records within their local
microservice context.

Our evaluation shows that ThunQ’s performance is suitable to support large-
scale multi-tenant microservice applications. ThunQ has limited overhead and
performs better than postfiltering at large scales. Moreover, ThunQ’s perfor-
mance is comparable to the baseline hand-crafted implementation.

As a part of future work, we want to support access control policies that use
data from multiple data-sources for policy evaluation, for example by means of
the Command Query Responsibility Segregation [15] pattern for microservices.
Another effort can be focused on supporting obligations and HBAC policies [3].

References

[1] E. Bertino and R. Sandhu. “Database Security-Concepts, Approaches, and
Challenges”. In: IEEE TDSC 2.1 (2005).

[2] J. Bogaerts, B. Lagaisse, and W. Joosen. “SEQUOIA: A Middleware Sup-
porting Policy-Based Access Control for Search and Aggregation in Data-
Driven Applications”. In: IEEE TDSC 18.1 (2021).

[3] D.F.C. Brewer and M.J. Nash. “The Chinese Wall security policy”. In:
Proc. IEEE S&P 1989.

[4] C. Bystr et al. Locust. url: https://locust.io/.
[5] B. De Win et al. “On the importance of the separation-of-concerns prin-

ciple in secure software engineering”. In: ACSAC - WAEPSSD 2003.
[6] A. Faravelon et al. “Configuring Private Data Management as Access Re-

strictions: From Design to Enforcement”. In: ICSOC 2012. Springer.

https://locust.io/

[7] C. J. Guo et al. “A Framework for Native Multi-Tenancy Application
Development and Management”. In: CEC-EEE 2007.

[8] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. 2012.
[9] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. “Protection in Operating

Systems”. In: Commun. ACM 19.8 (Aug. 1976).
[10] V. Hu et al. Guide to Attribute Based Access Control (ABAC) Definition

and Consideration. Tech. rep. NIST, 2014.
[11] Keycloak. url: https://www.keycloak.org/.
[12] Open Policy Agent. url: https://www.openpolicyagent.org/.
[13] L. Opyrchal et al. “Bouncer: Policy-Based Fine Grained Access Control in

Large Databases”. In: IJSIA 5.2 (2011).
[14] Rego. https : / / www . openpolicyagent . org / docs / latest / policy -

language/. Accessed: 2021-05-26.
[15] C. Richardson. Microservices Patterns. Manning Publications Co., 2018.
[16] S. Rizvi et al. “Extending Query Rewriting Techniques for Fine-Grained

Access Control”. In: Proc. SIGMOD ’04. ACM.
[17] P. Samarati and S. C. de Vimercati. “Access Control: Policies, Models,

and Mechanisms”. In: FOSAD 2001. Springer.
[18] T. Sandall. Partial Evaluation. Feb. 2018. url: https://blog.openpolicyagent.

org/partial-evaluation-162750eaf422 (visited on 05/12/2021).
[19] R. S. Sandhu. “Lattice-Based Access Control Models”. In: Computer 26.11

(Nov. 1993).
[20] R. S. Sandhu et al. “Role-Based Access Control Models”. In: Computer

29.2 (Feb. 1996).
[21] Spring Boot. url: https://spring.io/projects/spring-boot.
[22] Spring Cloud Gateway. url: https://spring.io/projects/spring-

cloud-gateway.
[23] Spring Data. url: https://spring.io/projects/spring-data.
[24] T. Taibi, V. Lenarduzzi, and C. Pahl. “Architectural Patterns for Microser-

vices: A Systematic Mapping Study”. In: Proc. CLOSER 2018. SciTePress.
[25] T. Verhanneman et al. “Uniform application-level access control enforce-

ment of organizationwide policies”. In: ACSAC ’05.
[26] T. Westkämper et al. Querydsl. url: http://www.querydsl.com/.
[27] eXtensible Access Control Markup Language (XACML) Version 3.0. Stan-

dard. Jan. 2013.
[28] Z. Xu and S. D. Stoller. “Mining Attribute-Based Access Control Policies”.

In: IEEE TDSC 12.5 (2015).
[29] G. Zhang, J. Liu, and J. Liu. “Protecting Sensitive Attributes in Attribute

Based Access Control”. In: ICSOC 2012 Workshops. Springer.
[30] Zuul. url: https://github.com/Netflix/zuul.

https://www.keycloak.org/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://blog.openpolicyagent.org/partial-evaluation-162750eaf422
https://blog.openpolicyagent.org/partial-evaluation-162750eaf422
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-cloud-gateway
https://spring.io/projects/spring-cloud-gateway
https://spring.io/projects/spring-data
http://www.querydsl.com/
https://github.com/Netflix/zuul

	ThunQ: A Distributed and Deep Authorization Middleware for Early and Lazy Policy Enforcement in Microservice Applications

