
OWebSync: A Web Middleware with State-Based
Replicated Data Types and Merkle-Trees for Seamless

Synchronization of Distributed Web Clients
Anonymous Author(s)
Submission Id: 75

Abstract
Many enterprise software services are adopting a fully web-
based architecture for both internal line-of-business applica-
tions and for online customer-facing applications. Although
wireless connections are becoming more ubiquitous and
faster, mobile employees and customers are often offline
due to expected or unexpected network disruptions. Never-
theless, continuous operation of the software is expected.

This paper presents OWebSync: a web-based application
middleware for the continuous synchronization of online
web clients and web clients that have been offline for a longer
period of time. OWebSync implements a fine-grained data
synchronization model and leverages Merkle-trees and state-
based Convergent Replicated Data Types to achieve the re-
quired performance, both for online interactive clients, as
well as for resynchronizing clients that have been offline.

In comparison with operation-based and state-based mid-
dleware solutions, OWebSync is especially better in oper-
ating in and recovering from offline settings and network
disruptions. Compared to operation-based solutions, OWeb-
Sync also scales better to tens of concurrent editors on a
single semi-structured document. Compared to other state-
based approaches, it doesn’t require to transmit the full state,
and also doesn’t store metadata on the server about the client
versions. OWebSync has been validated and evaluated in two
industrial case studies.

1 Introduction
Web applications are the default architecture for many online
software services, both for internal line-of-business applica-
tions such as CRM, HR, and billing, as well as for customer-
facing software service delivery. Native fat clients are being
abandoned in favor of browser-based applications. Browser-
based service delivery fully abstracts the heterogeneity of the
clients, and solves the deployment and maintenance prob-
lems that come with native applications. Nevertheless, native
applications are still being used when rich and highly interac-
tive GUIs are needed, or when applications need to function
offline for a longer time. The former reason is disappearing
as HTML5 and JavaScript are becoming more powerful. The
latter reason should be disappearing too with the arrival of
WiFi, 4G and 5G ubiquitous wireless networks. However, in
reality connectivity is often missing for several minutes to
several hours. Mobile employees can be working in cellars

or tunnels, and customers sometimes want to use a software
service while in an airplane.
Collaborative web applications with concurrent edits on

shared data should offer prompt synchronization with in-
teractive performance. The research of Nielsen on usability
engineering [24] states that remote interactions should take
only one to two seconds to keep the user experience seam-
less. Users are annoyed after a 5 second waiting period and
10 seconds is the absolute maximum before users are leaving
the web application.

However, there is no generic, fully web-based middleware
solution that can be used by web applications to:

1. support fine-grained and concurrent updates by dis-
tributed web clients on local copies of shared data,

2. operate conflict-free in online and offline situations,
3. achieve continuous synchronization for online clients

and prompt resynchronization for offline clients,
4. scale to tens (20-30) of online clients that concurrently

edit a shared document with interactive performance,
5. tolerate hundreds of clients over time without inflating

and polluting the data with versioning metadata.
Several client-side frameworks exists for synchronization

of semi-structured data. They are either operation-based,
state-based or delta-state based. Operation-based approaches
distribute the updates as operations to all replicas. Opera-
tional Transformation (used in Google Docs [45]) is a pop-
ular operation-based technique for real-time synchroniza-
tion in web applications, but it is not resilient against mes-
sage loss or out-of-order messages. It also requires a cen-
tral server transforming the operations for other clients to
deal with concurrent changes. Commutative Replicated Data
Types [31], as used by SwiftCloud [26, 34], Yjs [22, 23, 54]
and Automerge [16, 39] are also operation-based. Again, up-
dates need to be propagated, as operations, to all clients
using a reliable, exactly-once, message channel. However,
no transformation is required because operations are re-
quired to be commutative. State-based Convergent Repli-
cated Data Types [31] are resilient against message loss, but
a large amount of data has to be transferred between all
replicas. This approach is often used to achieve asynchro-
nous background synchronization between data centers, e.g.
in Riak [50], and is less suited for interactive collaborative
applications. Delta-state based CRDTs [1, 33], as used by Le-
gion [32, 46], need much less of the message channel. They

1



Anon. Submission Id: 75

use vector clocks to calculate delta-updates, which require
one entry per client per object in the server-side metadata.
This doesn’t integrate well with a stateless web application
architecture and the dynamic nature of the web. It is often
uncertain if a web client will ever connect to a server again.

In this paper we present OWebSync1, a generic web mid-
dleware for browser-based applications, which supports con-
current updates on local copies of shared data between dis-
tributed web clients, and which supports continuous, prompt
and fine-grained synchronization between online clients.
The contribution of this paper is a data-synchronization
middleware with the following advances compared to state-
of-the-art frameworks:

1. prompt and seamless resynchronization when clients
were offline due to expected or unexpected network
disruptions, while maintaining interactive synchro-
nization in the online settings,

2. minimization of data-transfer of state-based CRDTs
by using Merkle-trees [21],

3. no metadata is stored on the server about the different
client versions and identifiers.

At the implementation level, OWebSync provides a generic,
reusable JSON [6] based data type that web applications
can leverage to model their application data. One can nest
several map structures into each other to build a complex
tree-structured data model. These data types support fine-
grained and conflict free synchronization of all items in the
tree-based JSON document.

Our comparative evaluation shows that all online clients
receive updates from other clients within the time span of
seconds, even when tens of clients are editing hundreds of
shared objects in a single document. This makes our solu-
tion suitable for online, interactive and collaborative applica-
tions. Compared to operation-based middlewares [39, 51, 54],
OWebSync is especially better in recovering from offline sit-
uations, even with silent network disruptions. Compared to
state-based approaches, it can reduce the network usage and
the storage of server-side metadata per client.
This paper is structured as follows. Section 2 provides

two motivating case studies and then provides the ratio-
nale and more background on synchronization mechanisms
such as CRDTs. Section 3 describes the generic, reusable
JSON-based data types of OWebSync. Section 4 presents the
deployment and runtime synchronization architecture. Sec-
tion 5 compares and evaluates performance in online and
offline situations using OWebSync and other state-of-the-art
synchronization frameworks. We discuss related work in
Section 6 and then we conclude.

1A try-out demo application on the middleware is available on an anony-
mous website (http://owebsync.cloudapp.net). One can open multiple
Chrome browsers as concurrent clients. No personal identifiable infor-
mation is gathered. No cookies are used.

2 Motivation, Background and Approach
This section explains the motivation of both the goal and
approach of the OWebSync middleware. First we present
two industrial case studies of online software services for
both mobile employees and customers that often encounter
offline settings due to expected or unexpected network dis-
ruptions. We then provide background information on Oper-
ational Transformation, Conflict-free Replicated Data Types
and Merkle-trees, and motivate our approach of state-based
CRDTs with Merkle-trees.

2.1 Case studies
The motivation and requirements have emerged from two in-
dustrial case studies from our applied research projects, that
have also been used for the evaluation of the middleware.
The first case study is an online software service from eWork-
force, a company that provides technicians to install network
devices for different telecom operators at their customers’
premises. The second company is eDesigners, who offers a
web-based design environment for graphical templates that
are applied to mass customer communication.
eWorkforce. eWorkforce has two kinds of employees that

use the online software service: the help desk operators at
the office and the technicians on the road. The help desk
operators accept customer calls, plan technical intervention
jobs and assign them to a technician. The technicians can
check their work plan on a mobile device and go from cus-
tomer to customer. They want to see the details of their next
job wherever they are, and need to be able to indicate which
materials they used for a particular job. Since they are al-
ways on the road, a stable internet connection is not always
available. Moreover, they often work in offline modus when
they work in basements to install hardware. Writing off all
used materials is crucial for correct billing and inventory
afterwards.

This case study needs to support long term offline usage,
with quick synchronization when coming online, especially
for last minute changes to the work plan of the technicians.
The help desk software needs to be operative at all times,
even without connection to the central database, because
customers can call for support and schedule interventions.
eDesigners. The company eDesigners offers a customer-

facing multi-tenant web app to create, edit and apply graph-
ical templates for mass communication based on the cus-
tomer’s company style. Templates can be edited by multiple
users at the same time, even when offline. When two users
edit the same document, a conflict occurs, and the versions
need to be merged. Edits that are independent of each other
should both be applied to the template (e.g. one edit changes
the color of an object, another edit changes the size). When
two users edit the same property of the same object, only one
value can be saved. This should be resolved automatically as
to not interrupt the user.

2

http://owebsync.cloudapp.net


OWebSync: A Web Middleware for Distributed Web Clients

This case study requires that the application is always
available, even on an airplane. Updates always need to be
possible, even when offline. When coming back online, the
updates need to be synchronized promptly without requir-
ing the user or the application to manually resolve conflicts.
When online, the performance should be interactive, espe-
cially when two users are working on the same template
next to each other.

2.2 Background, principles and approach
The previous section described the overall goal of OWebSync.
This section now describes our motivation and rationale of
the approach. Therefore, we first discuss the advantages and
problems of state-of-the-art techniques such as Operational
Transformation and Conflict-free Replicated Data Types.

Operational Transformation. OT [11] is a technique that
is often used to synchronize concurrent edits on a shared
document. OT works by sending the operations to the other
replicas. The operations are not necessarily commutative,
which means they cannot be applied immediately on other
replicas. A concurrent edit might conflict with another op-
eration, e.g. the location could have changed. Therefore, a
central server is used to transform the operations for the dif-
ferent replicas so that the resulting operations maintain the
original semantics. The problem is that the transformation
of the incoming operations of other clients on their local cur-
rent state can get very complex. Messages can also get lost
or can arrive in the wrong order. Hence, OT is not resilient
against message loss in offline situations [18].

Conflict-free Replicated Data Types. CRDTs [30, 31] are
data structures designed for replication that guarantee even-
tual consistency without explicit coordination with other
replicas. Conflict-free means that conflicts are resolved auto-
matically in a systematic and deterministic way, such that
the application or user doesn’t have to deal with conflicts
manually. There are two kinds of CRDTs: operation-based
or Commutative Replicated Data Types (CmRDT) and state-
based or Convergent Replicated Data Types (CvRDT).
Commutative Replicated Data Types. CmRDTs [30] make

use of operations to reach consistency, just like OT. Con-
current operations in CmRDTs need to be commutative and
can be applied in any order. This way, there is no central
server needed to apply a transformation on the operations.
As with OT, CmRDTs need a reliable message broadcast chan-
nel so that every message reaches every replica exactly-once.
Causally ordered delivery is required in some cases.

Convergent Replicated Data Types. CvRDTs [30] are based
on the state of the data type. Updates are propagated to other
replicas by sending the whole state and merging the two
CvRDTs. For this merge operation, there is a monotonic join
semi-lattice defined over the states of a CvRDT. This means
that there is a partial order defined over the possible states,
and that there is a least-upper-bound operation between two

states. The least-upper-bound is the smallest state that is
larger or equal to both states according to the partial order.
To merge two states, the least-upper-bound is computed
and the result is the new state. CvRDTs require little from
the message channel. Messages can get lost or arrive out
of order without a problem, since the whole state is always
communicated. The main disadvantage is that the state can
get quite large, and needs to be communicated every time.

Delta-state CvRDTs. δ -CvRDTs [1, 2] are a variant of state-
based CRDTs with the advantage that in some cases only
part of the state (a delta) needs to be sent for correct synchro-
nization. When a client performs an update, a new delta is
generated which reflects the update. Each client keeps a list
of deltas and remembers which clients have already acknowl-
edged a delta. As soon as all clients have acknowledged a
delta, the delta can be discarded because the update is now
reflected in the state of all clients. If a client was offline and
has missed too many deltas, then the full state must be sent,
just like with normal state-based CRDTs.
δ -CRDTs have some problems when using them in web

applications. Browser-based clients come and go with a large
churn rate and it is often unclear if a client will come back
online in the future (e.g. browser cache cleared). Keeping
extra metadata for all those clients, to be able to synchronize
only the required deltas, can result in a large storage or
memory overhead to keep track of them at the server. One
can always discard the metadata for clients that were offline
and send the full state if they do come back online eventually.
But this is of course not efficient when the state is large and
that client already had most of the updates.
A variant of δ -CRDTs, called ∆-CRDTs [33], is proposed

as solution to this problem. ∆-CRDTs are comparable to δ -
CRDTs, but instead of keeping track of the clients at the
server, it includes extra metadata about concurrent versions
of all clients in the data model (vector clocks) to calculate the
deltas dynamically. This solves the problem of keeping track
of the deltas for clients at the server, but it still needs client
identifiers and version numbers inside the vector clocks for
each object, and each client that made a change.
Another approach to optimize δ -CRDTs is using join de-

compositions [12, 13]. This approach doesn’t extend CRDTs
with additional metadata that needs to be garbage collected.
Instead, it can efficiently calculate a minimal delta to syn-
chronize. While this improves the network usage compared
to normal δ -CRDTs, it still requires clients to keep track of
their neighbours. When there is no such data available (e.g.
after a network partition), it needs to fallback to a state-based
approach. However, it only requires sending the full state
in a single direction (compared to bidirectionally in normal
state-based CRDTs). A digest-driven approach is also sup-
ported, which will send a smaller digest of the actual state.
However, for many CRDTs, such digest doesn’t exist and for
large, nested data, this digest would still be very large.

3



Anon. Submission Id: 75

Merkle-trees. Merkle-trees [21] or hash-trees are used to
quickly compare two large data structures. First, each item
in a data structure is hashed. Then the hashes are combined
in a hash on top, often in a binary way, by combining two
hashes from a lower level into a single hash at the higher
level. This continues until the root of the tree is created
with the top-level hash. Two data structures can now be
compared starting from the two top-level hashes. If the top-
level hashes match, the data structures are equal. Otherwise,
the tree can be descended using the mismatching hashes to
find the mismatching items.

Approach. Our use cases require both interactive perfor-
mance for the online clients, as well as fast bidirectional
resynchronization when a client was offline. The current
state-of-the-art solutions suffice for the online clients, at
least for small scale settings with 10 clients. But the perfor-
mance of all of them degrade quickly when they need to
synchronize with a client which was offline for some time or
with a new client which they never saw. Keeping metadata
about all browser-based clients doesn’t match the character-
istics of the web, where clients come and go at a fast rate.
OWebSync uses state-based CRDTs, which require little

from the message channel in comparison to operation-based
approaches. No state about other clients or client-based ver-
sioning metadata needs to be stored, unlike delta-state ap-
proaches. And even after long offline periods, the missed
updates can be computed and synchronized seamlessly. To
limit the overhead of full state exchanges between clients
and server, we adopt Merkle-trees in the data structure to
find the items that need to be synchronized efficiently. This
data structure and its building blocks are discussed in Section
3. Together with other architectural performance tactics, we
can achieve prompt synchronization in interactivemulti-user
web applications. This is discussed in Section 4.

3 The OWebSync Data Model
This section describes the conceptual data model of OWeb-
Sync that web applications will need to use to ensure syn-
chronization by the middleware. The data model is a CvRDT
for the efficient replication of JSON data structures, and ap-
plies Merkle-trees to quickly find data changes. The CvRDT
consist of two other types of CvRDTs: a Last-Write-Wins
Register (LWWRegister) [31] and an Observed-Removed
Map (ORMap) [31] extended with a Merkle-tree. The LWW-
Register is used to store values, such as strings, numbers and
booleans, in the leaves of the tree. The ORMap is a recursive
data structure that represents a map that can contain other
ORMaps or LWWRegisters.
Last-Write-Wins Register. This data structure contains ex-

actly one value (string, number or boolean) together with a
timestamp of the last change of the value. The data structure
supports three operations: reading the value, updating the
value and merging a LWWRegister with another one. Each

LWWRegister
timestamp
value

ORMap
observed: G-Set<id,hash,key,value>
removed: G-Set<id>

ORSet
observed: G-Set<id,value>
removed: G-Set<id>

2P-Set
observed: G-Set<value>
removed: G-Set<value>

G-Set
items: Set<value>

Figure 1. Class diagram of the CRDTs in OWebSync.

update operation also updates the timestamp. The merge op-
eration will always result in the value and timestamp of the
latest update. The timestamp is only used when a conflict
occurred, i.e. one or more clients have updated the value
concurrently. This conflict resolution strategy boils down to
a simple last-write-wins strategy.
Observed-Removed Map. The Observed-Removed Map is

implemented using an Observed-Removed Set (ORSet) as de-
scribed by Shapiro et al. [31]. Internally, the ORSet contains
two sets, the observed set and the removed set, to keep track
of the items that are added to the set and which items are
removed. A unique ID (UUID [20]) is added to each item to
make it possible to add a removed item back to the set, since
it will have a different ID when added again. The ORMap
contains tuples with a value and an ID, just like an ORSet,
and an extra key. We add an extra hash to the tuples in the
ORMap to construct the Merkle-tree. When the child is a
LWWRegister, the hash is simply the MD5-sum [28] of the
value of that register. When the child is another ORMap, the
hash of it is the combined hash of the hashes of all the chil-
dren of that ORMap. This way, when one value in a register
changes, all the hashes of the parents will also change, so that
a change can be detected by comparing the top-level hash
only. Figure 1 shows the internal structure of an ORMap.

This data structure supports four operations: reading the
value of a key, removing the value behind a key, updating
the value of a key and merging the ORMap with another one.
The read operation will be executed recursively to return
a complete JSON object of the whole sub-tree behind the
provided key when the child is also an ORMap, or will just
return a primitive value if the child is a register. When the
remove operation removes an item, only the ID needs to
be kept internally and the whole sub-tree of the removed
item can be discarded. The update operation will update
the value and the hashes. To merge two ORMaps, the union
of the respective observed and removed set is taken, just
like in a regular ORSet. Then, the hashes of the Merkle-
tree are compared to check for changes in the children of
the ORMap. When a mismatch is detected, the merge is
executed recursively to traverse the wholeMerkle-tree below

4



OWebSync: A Web Middleware for Distributed Web Clients

that key to detect all the changes. The conflict resolution
of the ORMap boils down to an add-wins resolution, i.e.
a concurrent add and remove operation will result in the
item being present in the set, since each add will get a new
identifier. Concurrent edits to different keys can be made
without a problem. Edits to the same key will be delegated
to the child CRDT (either another ORMap or a register).

Example. As an example, we illustrate the conceptual rep-
resentation of an application data object in the eDesigners
case study, as well as the resulting CRDTs in the OWebSync
data model. Figure 2 presents both the conceptual represen-
tation (Figure 2a) as well as two of the CRDTs (Figure 2b).
The latter represents the internal structure of two CRDTs
that form the conceptual representation. First the key under
which the CRDT is stored in a key-value store is listed, then
the internal value of the CRDT. The first CRDT is an ORMap,
the second a LWWRegister. For conciseness, only the top
and the left properties are shown as children of object36.
Considerations and discussion. The current data model is

best suited for semi-structured data that is produced and
edited by concurrent users, like the data items in the case
studies: graphical templates, a set of tasks or used materi-
als for a task. In fact, any data that can be modeled in a
tree-like structure such as JSON, that can tolerate eventual
consistency and that doesn’t require constraints between
the data, can use OWebSync for the synchronization. This
data model is less suited for applications like online bank-
ing which requires constraints such as: “your balance can
never be less than zero”. Text-editing is also not a great fit,
because there is not much structure in the data. If you would
see text as a list of characters, it would result in a tree with
one top-level node (the document) and one layer with many
child nodes (the characters). There won’t be much benefit in
using a Merkle-tree. OWebSync also expects that no client
is malicious.

In the current OWebSync data model, the removed-set of
the ORMap keeps the IDs of all removed children eternally
(so-called tombstones). As a result, the size of an ORMap can
accumulate over time and performance will degrade. With
a modest usage of deletion this will not be a large problem.
Even when you remove a large sub-tree of several levels
deep, only the ID of the root of the sub-tree is kept in the
removed-set of the parent. All other data will be removed
and is not needed anymore for correct synchronization. At
the moment, OWebSync doesn’t implement a solution for
cleaning up tombstones, but one strategy could be to simply
permanently remove all tombstones that are older than one
month. We then expect that a client will not be offline for
more than a month while performing concurrent edits. This
can be enforced by automatically logging out the user after
a month of no usage.

Another kind of conflict occurs when assigning different
types of CRDTs to the same path. Then the merge-operation
of the defined CRDTs cannot be used to resolve the conflict

automatically. This is solved by posing an order on the pos-
sible CRDTs, e.g. LWWRegister < ORMap. This means that
when such a conflict occurs, the ORMap is selected as actual
value, while the LWWRegister is discarded.

Another conflict is a concurrent remove and update of a
child CRDT. The CRDT proposed here maintains a remove-
wins semantic. This means that updates done to children,
are discarded when the parent is removed concurrently.

Next to primitive values and maps, the JSON specification
contains also the concept of ordered lists. This is currently
not supported by OWebSync, and just like Swarm [53], we
focused on the initial key data structures: last-write-wins
registers and maps. Keeping a total numbered order, like lists
do, is rarely needed and we did not need them for our two
case studies. Unique IDs in a map are better suited in a dis-
tributed setting. In the case studies, the ordering of items in a
set was also based on application-specific properties such as
dates, times or other values, instead of an auto-incremented
number of a list. Note that CvRDTs for ordered lists do exist
([29, 31]) and could be added in future work.

Adding new kinds of CRDTs to the data model is straight-
forward. An existing CvRDT can be used as is, except for an
extra hash to be part of the Merkle-tree. For a CRDT that
represents a leaf value (e.g. a Multi-Value Register [31]), the
hash is simply the hash of that value. For CRDTs that can
contain other values (e.g. a list [29]), a hash needs to be added
that combines the hashes of all the children.

4 Web-based synchronization architecture
This section describes the deployment and execution archi-
tecture of the OWebSync middleware as well as the syn-
chronization protocol. This middleware architecture is key
to support the data model and synchronization model de-
scribed in the previous section. We also elaborate on a set of
key performance optimization tactics to achieve continuous,
prompt synchronization for online interactive clients.

Overall architecture. The middleware architecture is de-
picted in Figure 3 and consists of a client and a server sub-
system. First, the client-tier middleware API is fully imple-
mented in JavaScript and completely runs in the browser
without any need for add-ins or plugins. The server is a
light-weight process listening for incoming web requests
and storing all shared data. The server is only responsible for
data synchronization and doesn’t run application logic. Both
the clients and server have a key-value store to make data
persistent on disk. The many clients and server communicate
using only web-based HTTP traffic andWebSockets [15]. All
communication messages between client and server are sent
and received using asynchronous workers inside the client
and server subsystems. We first elaborate on the client-tier
subsystem with the public middleware API for applications,
and then describe the client-server communication protocol
for synchronization in detail.

5



Anon. Submission Id: 75

{
"drawings": {

"drawing1": {
"object36": {

"fill": "#f00",
"height": 50,
"left": 50,
"top": 100,
"type": "rect",
"width": 80

}
}

}
}

(a) Conceptual representation of a single data object.

* drawings.drawing1.object36:
uuid: 0a2f7bc2-129f-11e9-ab14-d663bd873d93
hash: 7319eae53558516daafac19183f2ee34
observed:

- uuid: 23c1259a-129f-11e9-ab14-d663bd873d93
hash: 65bdd1b610f629e54d05459c00523a2b
key: "top"

- uuid: 0eac2a3a-546f-11e9-8647-d663bd873d93
hash: 67507876941285085484984080f5951e
key: "left"

...
removed:

* drawings.drawing1.object36.top:
uuid: 23c1259a-129f-11e9-ab14-d663bd873d93
hash: 65bdd1b610f629e54d05459c00523a2b
value: "100"
timestamp: 789778800000

(b) Structure of two CRDTs that represent “object36” and the property “top”.

Figure 2. Datastructure of the eDesigners case study.

Browser
Main thread
«HTML5»

Application

API
«JS»

Middleware

Worker thread

«JS»
Worker

«component»
IndexedDB

SYNC

Server

«JS»
Server

«component»
K/V-store

Figure 3. Overall architecture of the OWebSync middleware

Client-tier middleware and API. The public program-
ming API of the middleware is located completely at the
client-tier. Web applications are developed as client-side
JavaScript applications that use the following API:

• GET(path): returns a JavaScript object or primitive
value for a given path.

• LISTEN(path, callback): similar to GET, but every
time the value changes, the callback is executed.

• SET(path, value): create or update a value at a given
path.

• REMOVE(path): remove the value or sub-tree at the
given path.

The OWebSync middleware is loaded as a JavaScript library
in the client and the middleware is then available in the
global scope of the web page. One can then load and edit
data using typical JavaScript paths. An example from the
eDesigners case study:
let d1 = await OWebSync.get("drawings.drawing1");
d1.object36.color = "#f00";
OWebSync.set("drawings.drawing1", d1);

The difference between the levels of hierarchy is as fol-
lows. The object at "drawings.drawing1" is fetched from
disc and is represented as a JavaScript object in-memory. If
there would be other drawings (e.g. drawing2), they won’t be
loaded. The access to "d1.object36.color" is just a plain
JavaScript object access and has nothing to do with OWeb-
Sync. For performance reasons, it is best to always scope
to the smallest possible object from the database, in this
example that would be like this:
OWebSync.set("drawings.drawing1.object36.color","#f00")

Synchronization protocol. The synchronization protocol
between client and server consists of three key messages
that the client can send to the server and vice versa:

• GET(path, hash): the receiver returns the CRDT at a
given path if the hash is different from its own CRDT
at the given path.

• PUSH (path, CRDT): the sender sends the CRDT data
structure at a given path and the receiver will merge
it at the given path.

• REMOVE(path, uuid): removes the CRDT at a given
path if the unique identifier (UUID) of the value is
matching the given UUID. As such, a newer value with
a different UUID will not be removed.

The protocol is initiated by a client, which will traverse the
Merkle-tree of the CRDTs. The synchronization starts with
the highest CRDT in the tree. The client will send a GET
message to the server with the given path and hash value
of the CRDT. If the server concludes that the hash of the
path matches the client’s hash, the synchronization stops.
All data is consistent at that time.

If the hash doesn’t match, the server returns a PUSH mes-
sage with the CRDT that is located at the path requested by
the client. This doesn’t include the child CRDTs, only the
metadata (key, UUID and hash) of the immediate children.

6



OWebSync: A Web Middleware for Distributed Web Clients

Client Server1: [GET "drawings"]

2: [PUSH "drawings"]

3: [PUSH "drawings.drawing1"]

4: [PUSH "drawings.drawing1.object36"]

5: [PUSH "drawings.drawing1.object36.color"]

6: []

Figure 4. Synchronization protocol when the client made
an update. With every PUSHmessage, the respective CRDT is
sent. E.g. for message 4, the first CRDT in Figure 2b is sent.

The client must merge the new CRDT with the CRDT at its
requested path. This merger process at the client might de-
tect conflicting children in the tree by comparing the hashes.
The client will then PUSH the CRDTs of those conflicting
children to the server. The server then needs to merge those
CRDTs. If a child doesn’t exist yet, an empty child is created
and a GET message is sent.

The process continues by traversing the tree and exchang-
ing PUSH and GET messages until the leaves of the tree are
reached. The CRDT in this leaf is a register and can bemerged
immediately. All parents of this leaf are now updated such
that finally the top-level hash of client and server match. If
the top-level hashes do not match, other updates have been
done in the meantime, and the process is repeated. Per PUSH
message that is sent, the process descends one level in the
Merkle-tree. The number of messages (and thus the length
of the synchronization protocol) is therefore limited to the
maximum depth of the Merkle-tree.
If during a merger process, a child seems to be removed

at one side, but not at the other side, a REMOVE message is
sent to the other party so that it can remove that value and
add the UUID to the removed set of the correct ORMap.
Alternatively, this additional third message type of REMOVE
could be avoided if a PUSH of the parent would be sent instead.
However, the push of a parent with many children would
cause a serious overhead compared to a REMOVE message
with only a path and a UUID.

Figure 4 shows an example for the eDesigners case study
where the client changed the color of an object. If the client
had made multiple changes, e.g. he also changed the height,
the start of the synchronization protocol would be the same,
except that the height will also be included in message five.

Performance optimization tactics. Themain optimization
tactic to achieve prompt synchronization for interactive ap-
plications is the reduction of network traffic by the Merkle-
trees. However, there are additional tactics needed to further
improve synchronization time. The protocol discussed above

leads to many messages between clients and server. To re-
duce the chattiness and overhead of the synchronization
protocol between the many clients and server, different opti-
mization tactics are applied by the client and the server.
Message batching. In the basic protocol explained above,

all messages are sent to the other party as soon as a mismatch
of a hash in the Merkle-tree is detected. This leads to lots
of small messages (GET, PUSH, and REMOVE) being sent out,
and as a consequence, many messages are coming in while
still doing the first synchronization. This results in many
duplicated messages and doing a lot of duplicated work on
sub-trees, since the top-level hash will only be up-to-date
when the bottom of the tree is correctly synchronized, and
not when another synchronization round is already busy
somewhere halfway in the tree. To solve this problem, all
messages are grouped in a list and are sent out in batch after
a full pass of a whole level of the tree has occurred. At the
other side, the messages are processed concurrently, and all
resulting messages are again grouped in a list, and then are
sent out after the incoming batch was fully iterated. If no
further messages are resulting from the processing of a batch,
an empty list is sent to the other party. This ends the syn-
chronization. As a result, fewer messages are sent between
a client and server, and only one synchronization per client
is occurring at the same time, resulting in no duplicated
messages and no duplicated work on sub-trees.
Extra levels in the Merkle-tree. When the number of child

values in an ORMap increases, all the metadata for those
children (key, UUID and hash) needs to be sent each time
during the synchronization to check for changes. This leads
to very high network usage, since it cannot make use of the
Merkle-tree efficiently. To solve this problem, we introduced
extra, virtual, levels in the Merkle-tree. Whenever an ORMap
needs to be transmitted which contains many children (i.e.
hundreds), instead an extra Merkle-tree level is sent. This
extra level combines the many children in groups of e.g. 10.
This number can be adapted to the total number of children.
As a result, 10 times less hashes will be sent, combined with
the key-ranges the hashes belong to. The other party can
verify the hashes and determine which ones are changed
and then push the 10 children for which the combined hash
didn’t match. This improvement leads to a slight delay in
synchronization time since it adds one extra round-trip, but
when only a small part of the children is updated, it uses
much less bandwidth.

5 Performance evaluation
The performance evaluation will focus on situations where
all clients are continuously online, as well as on situations
where the network is interrupted. For online situations, we
are especially interested in the time it takes to distribute and
apply an update to all other clients that are editing the same
data. For the offline situation we are especially interested in

7



Anon. Submission Id: 75

the time it takes for all clients to get back in sync with each
other after the network disruption, and in the time it takes
to restore normal interactive performance.
The performance evaluation in this paper is performed

using the eDesigners case study, as this scenario has the
largest set of shared data and objects between users. The
eWorkforce case study has fewer shared data with fewer con-
current updates as technicians typically work on their own
data island and the data contains fewer objects with less fre-
quent changes. To compare performance, we implemented
the eDesigners case study five times on five representative
JavaScript technologies for web-based data synchronization:
our OWebSync platform, which uses state-based CRDTs
with Merkle-trees, Yjs [54] and Automerge [39] which use
operation-based CRDTs, and ShareDB [51] which makes use
of OT. We used Legion [32] for testing delta-CRDTs. Both
Yjs (917 GitHub stars) and ShareDB (2323 GitHub stars) are
widely-used open source technologies that are available on
GitHub. Automerge is the implementation of the JSON data
type of Kleppmann and Beresford [17]. Legion is not widely-
used in production, but is currently the only implementation
of delta-CRDTs in JavaScript to the best of our knowledge.
We did not evaluate Google Docs, which uses OT, because it
is text based, and can not be used to synchronize the JSON-
documents used in the test. Instead we opted for ShareDB.
We use Fabric.js [43] for the graphical interface.

Test setup. Both the clients and the server are deployed as
separate Docker containers on a set of VMs in the Azure [40]
public cloud. A VM has 4 vCPU cores and 8 GB of RAM
(Azure Standard A4 v2) and can hold up to 3 client containers.
A client container contains a browser which loads the client-
side middleware from the server. The middleware server is
deployed on a separate VM (Azure Standard F4s v2). The
monitoring server that captures all performance data is also
deployed on a separate VM. The Linux tc tool [3] is used
to artificially increase the latency between the containers
to an average of 60 ms with 10 ms jitter, which resembles
the latency of a 4G network in the US. Other countries are
pushing latencies down to 30 ms [48].

Our evaluation contains three benchmarks with different
configurations. One benchmark represents the continuous
online scenario where clients are making updates for 10
minutes and stay online the whole time. The second bench-
mark is the offline scenario where the network connection
between the clients and the server is disrupted during the
test. In total, we executed 60 tests for those two benchmarks:
6 tests to be executed by each of the 5 technologies, in both
a continuous online setting as well as in a disconnected situ-
ation. These 6 tests vary in number of clients and data size:
8, 16, or 24 clients are performing continuous concurrent
updates on 100 or 1000 objects in a single shared data set.
One such object was shown in Figure 2a in Section 3 and
has 7 attributes. Each client edits one object, which leads to

two random writes on a shared object, every second (x and
y position). In reality, a single update in the user-interface
can lead to several writes to the data store, e.g. updating a
gradient color would lead to 5 writes in Fabric.js [43].

We use at most 24 clients, which are editing the same doc-
ument concurrently. In comparison, Google Docs (the most
popular collaborative editing system today) supports a maxi-
mum of 100 concurrent users according to Google itself [45].
But in practice, latency starts to increase significantly when
the number of users exceeds 10 [8]. Our performance results
show the same problem for ShareDB, which uses the same
technique. In our performance evaluation, one iteration of a
test takes about 10 minutes. Before each test, the database is
populated and the initial synchronization will be performed.
The first minute is used to execute a warm-up. Then we mea-
sure the performance of 9 minutes of continuous updates. To
ensure stability and consistency of the test results, all tests
are repeated 10 times 2.

The third and last benchmark is used to measure the total
size of the data set over a longer time (2 hours). Every 10
minutes, 5 new client browsers will start making changes.
After those 10 minutes, the browsers are shut down and
replaced by others. After 2 hours, about 60 browsers of clients
are introduced into the system. This benchmark simulates
the eDesigners case study over the course of a few years,
several employees and external consultants will have worked
on the template using different browsers on their devices
(desktop, laptop, tablet). In the meantime they might have
cleared their browser cache, used an incognito session or
switched to a new device. This scenario is used to verify how
well the 5 frameworks will perform over time.

Performance of continuous online updates. The follow-
ing performance measurements quantify the statistical di-
vision of the time it takes to synchronize a single update
to all other clients in the case of a continuous online situa-
tion. The synchronization times of the succeeded updates
are illustrated in Figure 5.
Analysis of the results. For the test with 8 clients and 100

objects, all operation-based approaches (ShareDB, Yjs and
Automerge) synchronize the updates faster than the state-
based approaches (Legion and OWebSync). For these three
operation-based approaches, 99% is below 0.3 seconds. Le-
gion needs about 1.0 second for synchronizing the 99th per-
centile and OWebSync needs 1.3 seconds. The reason for
this is that Legion and OWebSync don’t keep track of which
updates have been sent to which client. Hence, each time the
data is synchronized, a few extra round-trips are required to
calculate which updates are needed. ShareDB, Yjs and Au-
tomerge can just send the operations. On a faster network,
with less latency, both Legion and OWebSync will be able

2Tables with the detailed performance results and the raw logs and data of
all 60 tests are available on an anonymous Azure storage account: https:
//owebsyncdata.blob.core.windows.net/logs/data.zip

8

https://owebsyncdata.blob.core.windows.net/logs/data.zip
https://owebsyncdata.blob.core.windows.net/logs/data.zip


OWebSync: A Web Middleware for Distributed Web Clients

1

5

0.1

10 s
Synchronization time

8 clients

100 1000
Objects

16 clients

100 1000
Objects

24 clients24 clients

100 1000
Objects

ShareDB Yjs Automerge Legion OWebSync

Figure 5. Aggregated boxplots containing the times to achieve full synchronization to all clients. Each boxplot contains all 10
iterations for each of the 30 tests in the fully online situation. In order to compare technologies that have results of the same
order of magnitude, as well as results in different orders of magnitude, we opted for a logarithmic Y axis.

100
200
300
400

0

500 kbit/s
Network usage

8 clients

100 1000
Objects

16 clients

100 1000
Objects

24 clients

100 1000
Objects

ShareDB Yjs Automerge Legion OWebSync

Figure 6. Network usage per client for each test. Some tech-
nologies use less bandwidth when the scale increases, be-
cause the time to synchronize increases even more.

to synchronize faster than in this test (since the round-trip
time will be less). But even with this high latency in this
benchmark, OWebSync performs within the guidelines of
1-2 seconds for interactive performance. For the test with
24 clients and 1000 objects, ShareDB has raised to 7.7 sec-
onds for the 99th percentile. The server cannot keep up with
transforming the incoming operations. Since the operations
in Yjs and Automerge are commutative and don’t need a
transformation, the server doesn’t become a bottleneck here.
Network trade-off. The trade-off for this scalable, prompt

synchronization, is that OWebSync has a rather large net-
work usage compared to the other tested technologies (Fig-
ure 6). Only Automerge requires more bandwidth, because
it stores the whole history and uses long text-based UUIDs
as client identifiers, compared to just integers with Legion.
The usage of Merkle-trees reduced the network usage of
OWebSync with about a factor 8 in the worst case (1000
objects under a single node in the tree), compared to normal
state-based CRDTs. Introducing extra levels in the Merkle-
tree for nodes with many children lowered the bandwidth
with another factor 3. Even in the test with 24 clients and

1000 objects, the used bandwidth is only 360 kbit/s per client.
This is much less than the available bandwidth, which is on
average 27 Mbit/s on a mobile network in the US [52]. The
server consumes about 8.7 Mbit/s, which is acceptable for a
typical data center. The data structure has an important ef-
fect on the network usage. One might create a tree-structure
with few nodes which have many children. This will make
the Merkle-tree less useful, since the metadata of all the chil-
dren needs to be exchanged to be able to determine which
children are updated. This can be seen in Figure 6 by com-
paring the network usage of the tests with 100 objects to the
tests with 1000 objects. The other possibility is that there
are fewer children per node, but with an increased depth of
the tree. This positively affects the network usage, as less
metadata will need to be exchanged. However, synchroniz-
ing the whole tree will take more round-trips as there are
more levels in the tree to go through.

Interpretation and discussion. For interactive web applica-
tions, usability guidelines [24, 25] state that remote response
times should typically be 1 to 2 seconds on average. 3 to 5
seconds is the absolute maximum before users are annoyed.
The user is often leaving the web application after 10 seconds
of waiting time. We start from these numbers to assess the
update propagation time between users in a collaborative
interactive online application with continuous updates. We
are interested in the time for a user to receive an update from
another online user. These numbers should be achieved not
only for the average user (the mean synchronization time)
but also for the 99th percentile (i.e. most of the users [9]).
The 99th percentile for the synchronization time for the

OWebSync test with 24 clients and 1000 objects is below 1.5
seconds. ShareDB operates with sub-second synchronization
times when sharing 100 objects between 8 writers. But when
the number of objects and writers increases, the synchro-
nization time raises to 7.7 seconds for the 99th percentile.

9



Anon. Submission Id: 75

1

5
10

0.1

100 s
Resynchronization time

8 clients

100 1000
Objects

16 clients

100 1000
Objects

24 clients24 clients

100 1000
Objects

ShareDB Yjs Automerge Legion OWebSync

Figure 7. Boxplots of the time it takes for an update done during the failure scenario to be received by all clients. The time
before a client notices the network connection is reestablished is not taken into account. Note that the median here means that
only 50% of all missed updates are synchronized to all clients.

This is in line with the observations of Dang and Ignat [8]
for Google Docs, which uses the same approach as ShareDB
(OT). The other technologies stay well below 5 seconds in
the online scenario and can be called interactive.

Performance in disconnected scenarios. We now present
the performance analysis for the case when the network
between the clients and the server is disrupted. In these
tests, we have an analogous test setup. However, during the
10 minute execution, we start dropping all messages after 3
minutes (2 minutes in the graphs as the first minute is used as
warm-up) for 1 minute. We evaluate the time that is needed
to achieve full bidirectional synchronization of all concurrent
updates on all clients during the network disruption. We also
evaluate the time that is needed to restore normal interactive
performance in the online setting after the disruption.

Analysis of the results. The boxplots of these tests (Figure 7)
show that OWebSync can synchronize all missed updates
faster than ShareDB, Yjs, Automerge and Legion. Note that
at the median of the boxplots, only 50% of the missed updates
is synchronized. Only at the upper whisker, all of the missed
updates are fully synchronized. Then, each user is fully up-to-
date with everything that was updated during the network
disruption. In the large scale scenario with 24 clients and
1000 updates, the time to synchronize all missed updates in
case of network failure is 3.5 seconds for the 99th percentile
for OWebSync, which is acceptable for interactive web appli-
cations. The other technologies need more than 5 seconds to
only synchronize half of the missed updates, meaning that
users will become annoyed. The operation-based approaches
need several tens of seconds to synchronize all of the missed
updates because they need to replay all missed operations
on the clients that were offline. This is due to their operation-
based nature. OWebSync only needs to merge the new state,
which it does in exactly the same way as if the failure never

10

20

0

30 s
Synchronization time

1 2 3 4 5 6 7 80 9min
Timeline of the test

ShareDB Yjs Automerge Legion OWebSync

Figure 8. Mean time to synchronize updates after the net-
work disruption for the test with 24 clients, 1000 objects.

happened. Legion could keep up with OWebSync in the on-
line scenario, but now we see that resynchronization after
network disruptions starts to take longer when the scale of
the test or the size of the data set increases.
Timeline analysis of the tests. The timelines in Figure 8

show the resynchronization times on the y-axis, without the
offline time during the network disruption, for each update
done at a givenmoment during the test timeline (x-axis). This
means that for an update done 20 seconds before the end of
the disruption, and which got synchronized 22 seconds later,
the resynchronization time is 2 seconds.
In the test with 24 clients and 1000 objects (Figure 8),

OWebSync quickly returns to the same performance as be-
fore the network disruption. Legion needs more time to
synchronize the missed updates, but also quickly returns to
the same performance. The operation-based approaches take
much longer to synchronize missed updates, and take tens of
seconds to return to the original performance. ShareDb and
Automerge need more than half a minute to return to the
same interactive performance as before. This means that in a
setting with frequent disconnections, the user won’t be able
to gain interactive performance, since even when coming

10



OWebSync: A Web Middleware for Distributed Web Clients

2.5

5

0

7.5 MB
Data size

10 2hours
Timeline of the test

ShareDB Yjs Automerge Legion OWebSync

Figure 9. Evolution of the total data size on the server.

back online, those technologies cannot achieve prompt and
interactive synchronization immediately.

Total size of the data model. All other technologies used
in the evaluation use some form of client identifiers and
version numbers to keep track of changes (e.g. vector clocks
in Legion). This means that the size of the data set will grow
over time, especially in highly dynamic settings like the
web. Figure 9 shows the total data size on the server over
time while several users are joining and leaving. The size
of the data set on the server remains constant over time
when using OWebSync. The other techniques grow with
the number of clients and the number of operations. In the
dynamic setting of the web, keeping track of all clients using
version vectors with client identifiers will eventually inflate
and pollute the metadata. Users can clear the browser cache,
browse incognito or visit the web application on multiple
devices including someone else’s device for one time. By
storing those client identifiers in the datamodel on the server,
the performance will decrease over time. Yjs is an exception
and stops growing fast in size after a few minutes. This is
because Yjs will garbage collect old operations after 100
seconds [54]. While this limits the total size of the data, this
operation is not safe and clients that were offline for a longer
time might end up in an inconsistent state or lose data.
The first two benchmarks are performed on a clean data

set, meaning that the size of the data on the server is still
small. If we would start the tests after e.g. 5 hours of warm-
up, the results for the other technologies would be worse.
We performed the evaluation in a worst case scenario for
OWebSync, with clean data sets for the other frameworks.

Summary. Our evaluation shows that the operation-based
approaches work well in continuous online situations with a
limited number of users. Operational Transformation cannot
be used with many clients as the server eventually becomes
a bottleneck. Operation-based approaches can synchronize
updates faster than state-based approaches like Legion and
OWebSync. However, when network disruptions occur, these
technologies cannot achieve acceptable performance and
need tens of seconds to achieve synchronization. Delta-state
CRDTs, as used in Legion, can recover faster from network
disruptions than operation-based approaches, but still need

Table 1. Summary of the synchronization times in seconds
for 24 clients and 1000 objects.

online offline
50% 99% 50% 99%

ShareDB 4.45 7.69 12.67 25.10
Yjs 0.14 0.17 20.21 109.15
Automerge 0.14 0.20 11.59 18.90
Legion 0.64 1.03 7.61 8.56
OWebSync 1.34 1.49 2.87 3.53

more than 5 seconds (8.6 s for the 99th percentile) to syn-
chronize missed updates, which cannot be called interactive
anymore. Moreover, the size of the data set will increase with
the number of updates and the number of clients. OWebSync
can achieve much better performance in the order of seconds,
which is still acceptable for interactive web applications. In
a setting with frequent offline situations, e.g. for mobile em-
ployees, OWebSync is the more appropriate technology and
outperforms all other technologies. Over time, OWebSync
can continue to deliver the same prompt and interactive
performance, as no client identifiers or version vectors are
stored. Table 1 summarizes the results in seconds of the large
scale test (24 clients, 1000 objects) for the average user (50th
percentile) and most of the users (99th percentile) for both
the online and offline setting.

6 Related work
The related work consists of three types of work: 1) con-
cepts and techniques such as CRDTs and OT, 2) NoSQL data
systems such as Dynamo and Cassandra, as well as synchro-
nization frameworks between data centers and 3) synchro-
nization frameworks for replication to the client.

Concepts and techniques. The concepts and techniques like
OT and CRDTs were discussed in Section 2. Other text-based
versioning systems such as Git [44] are not made to manage
data structures and do not always guarantee valid data struc-
tures after synchronization. Code, XML or JSON can end up
malformed and often require user-level resolution.

We now discuss some other extensions to CRDTs. Conflict-
free Partially Replicated Data Types [7] allow to replicate
only part of a CRDT. This helps with bandwidth and mem-
ory consumption, as well as security. OWebSync allows to
replicate any arbitrary sub-tree of the whole CRDT tree. Hy-
brid approaches combining operation-based and state-based
CRDTs are also possible as demonstrated by Bendy [4]. For
data that can tolerate staleness, one can make use of state-
based CRDTs, while for data with interactive performance
requirements, operation-based CRDTs can be used. This dy-
namic decision is only made between the servers, and not on
the clients. For clients, only operation-based CRDTs are avail-
able, since they will never make enough updates to justify
plain state-based CRDTs.

11



Anon. Submission Id: 75

Distributed data systems and NoSQL systems. Based on
the original Dynamo paper [9], many other open-source
NoSQL systems have been developed for structured or semi-
structured data, focusing on eventual consistency within
or between data centers. Dynamo uses multi-value regis-
ters to maintain multiple versions of the data and expects
application level resolution of conflicts. Cassandra [19, 41]
supports fine-grained versioning of cells in a wide-column
store. It uses wall-clock timestamps for each row-column
cell, and adopts a last-write-wins strategy to merge two cells.
CouchDB [42] and MongoDB [47] focus on semi-structured
document storage, typically in a JSON format. CouchDB of-
fers only coarse-grained versioning per document and stores
multiple versions of the document. Applications need to re-
solve the version conflicts. Moreover, it also doesn’t support
fine-grained conflict detection within two JSON documents.

Several commercial database systems allow to use CRDTs
as the underlying data model: e.g. Riak [50], Akka [37] and
Redis [5]. Next to those commercial products, several re-
search projects have emerged. Antidote [38] is a research
project to develop a geo-replicated database over world-wide
data centers. It adopts operation-based commutative CRDTs
for highly-available transactions. It supports partial repli-
cation but assumes continuous online connections as the
default operational situation for clients. SMAC [10] uses an
operation-based CRDT storage system for state management
tasks for distributed container deployments. DottedDB [14]
uses node-wide dot-based clocks to find changes that need
to be replicated, without the need for explicit tombstones. It
doesn’t support replication to the clients, or offline edits.
Client-tier frameworks for synchronization. Many client-

side frameworks have appeared to enable synchronization
between native clients. Cimbiosys [27] is an application plat-
form that supports content-based partial replication and
synchronization with arbitrary peers. While it shares some
of the goals of OWebSync, it is best suited to synchronize
collections of media data (e.g. pictures, movies) and not for
JSON documents with fine-grained conflict resolution. Swift-
Cloud [26, 34–36] is a distributed object database with fast
reads and writes using a causally-consistent client-side lo-
cal cache and operation-based CRDTs. Metadata used for
causality in the form of vector clocks are assigned by the
data centers, so the size of the metadata is bound by the
number of data centers, and not by the number of updates
or the number of clients. The cache is limited in size and
the data is only partially available, limiting what data can
be read and updated during offline operation. Because it
uses operation-based CRDTs, it needs a reliable exactly-once
message channel, which is implemented by using a log.
Next to frameworks for native clients, there are several

JavaScript frameworks made for synchronization between
distributed web clients. Legion [32, 46] is a framework for
extending web applications with peer-to-peer interactions. It
also supports client-server usage and uses delta-state based

CRDTs for the synchronization. Automerge [16, 39] is a
JavaScript library for data synchronization adopting the
operation-based JSON data type of Kleppman [17]. It uses
vector clocks which grow in size with the number of clients.
PouchDB [49] is a client-side JavaScript library that can repli-
cate data from and to a CouchDB server. Local data copies are
stored in the browser for offline usage. PouchDB only sup-
ports conflict detection and resolution at the coarse-grained
level of a whole document. ShareDB [51] is a client-server
framework to synchronize JSON documents and adopts OT
as synchronization technique between the different local
copies. ShareDB can thus not be used in extended offline sit-
uations. In case of short network disruptions it can store
the operations on the data in memory and resend them
when the connection is restored. The offline operations are
lost when the browser session is closed. Yjs [22, 23, 54] is
a JavaScript framework for synchronizing structured data
and supports maps, arrays, XML and text documents. All
data types also use operation-based CRDTs for synchro-
nization. Swarm.js [53] is a JavaScript client library for the
Swarm database, based on operation-based CRDTs with a
partially ordered log for synchronization after offline situa-
tions. Swarm.js also focuses on peer-to-peer architectures
like chat applications and decentralized CDNs, while OWeb-
Sync focuses on client-server line-of-business applications.
None of these JavaScript frameworks support all of the fol-
lowing: fine-grained conflict resolution, interactive updates
when online and fast resynchronization after being offline, as
well as being scalable to tens of concurrently online clients
and hundreds of writers over time.

7 Conclusion
This paper presented a web middleware that supports seam-
less synchronization of both online and offline clients that
are concurrently editing shared data sets. Our OWebSync
middleware implements a data model that combines state-
based CRDTs with Merkle-trees, which allows to quickly
find differences in the data set and synchronize them to
other clients. Apart from the regular CRDT structure and
the hashes of the Merkle-tree, no other metadata needs to be
stored. Other approaches use client identifiers and version
numbers, or the full history to track updates, which will
pollute the metadata and decrease performance over time.
The comparative evaluation shows that the operation-

based approaches cannot achieve acceptable performance
in case of network disruptions and need tens of seconds to
achieve synchronization. Current state-based approaches us-
ing delta-state CRDTs are faster to recover than the operation-
based ones, but cannot achieve prompt synchronization of
missed updates. The state-based approach with Merkle-trees
of OWebSync can achieve better performance in the order of
seconds for both online updates and missed offline updates,
which is still acceptable for interactive web applications.

12



OWebSync: A Web Middleware for Distributed Web Clients

References
[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2015. Efficient

State-Based CRDTs by Delta-Mutation. In Networked Systems. Springer
International Publishing, Cham, 62–76. https://doi.org/10.1007/978-
3-319-26850-7_5

[2] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2018. Delta state
replicated data types. J. Parallel and Distrib. Comput. 111, Supplement
C (2018), 162 – 173. https://doi.org/10.1016/j.jpdc.2017.08.003

[3] Werner Almesberger. 1999. Linux network traffic control – implemen-
tation overview.

[4] Carlos Bartolomeu, Manuel Bravo, and Luís Rodrigues. 2016. Dynamic
Adaptation of Geo-replicated CRDTs. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing (SAC ’16). ACM, New York,
NY, USA, 514–521. https://doi.org/10.1145/2851613.2851641

[5] Cihan Biyikoglu. 2017. Under the Hood: Redis CRDTs (Conflict-free
Replicated Data Types).

[6] Tim Bray. 2014. The javascript object notation (json) data interchange
format. RFC 7158. IETF. https://www.rfc-editor.org/rfc/rfc7158.txt

[7] Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy.
2015. Conflict-free partially replicated data types. In 2015 IEEE 7th
International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE, 282–289.

[8] Quang-Vinh Dang and Claudia-Lavinia Ignat. 2016. Performance of
real-time collaborative editors at large scale: User perspective. In Inter-
net of People Workshop, 2016 IFIP Networking Conference (Proceedings of
2016 IFIP Networking Conference, Networking 2016 andWorkshops). IFIP,
Vienna, Austria, 548–553. https://doi.org/10.1109/IFIPNetworking.
2016.7497258

[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Siva-
subramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo:
amazon’s highly available key-value store. In ACM SIGOPS operat-
ing systems review, Vol. 41(6). ACM, New York, NY, USA, 205–220.
https://doi.org/10.1145/1294261.1294281

[10] Jacob Eberhardt, Dominik Ernst, and David Bermbach. 2016. SMAC:
State Management for Geo-Distributed Containers. Technical Report.
Technische Universitaet Berlin.

[11] C. A. Ellis and S. J. Gibbs. 1989. Concurrency Control in Groupware
Systems. SIGMOD Rec. 18, 2 (June 1989), 399–407. https://doi.org/10.
1145/66926.66963

[12] Vitor Enes, Paulo Sérgio Almeida, Carlos Baquero, and João Leitão.
2019. Efficient Synchronization of State-based CRDTs. In Proceedings
of the 35th IEEE International Conference on Data Engineering.

[13] Vitor Enes, Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker.
2016. Join Decompositions for Efficient Synchronization of CRDTs
After a Network Partition: Work in Progress Report. In First Workshop
on Programming Models and Languages for Distributed Computing
(PMLDC ’16). ACM, New York, NY, USA, Article 6, 3 pages. https:
//doi.org/10.1145/2957319.2957374

[14] R. J. T. Gonçalves, P. S. Almeida, C. Baquero, and V. Fonte. 2017. Dot-
tedDB: Anti-Entropy without Merkle Trees, Deletes without Tomb-
stones. In 2017 IEEE 36th Symposium on Reliable Distributed Systems
(SRDS). IEEE, 194–203. https://doi.org/10.1109/SRDS.2017.28

[15] Ian Hickson. 2012. The WebSocket API, W3C Candidate Recommenda-
tion. Technical Report. https://www.w3.org/TR/2012/CR-websockets-
20120920/

[16] Martin Kleppman and Alastair R Beresford. 2018. Automerge: Real-
time data sync between edge devices. http://martin.kleppmann.com/
papers/automerge-mobiuk18.pdf

[17] Martin Kleppmann and Alastair R Beresford. 2017. A Conflict-free
Replicated JSON Datatype. IEEE Transactions on Parallel and Dis-
tributed Systems 28, 10 (2017), 2733–2746.

[18] Santosh Kumawat and Ajay Khunteta. 2010. A survey on operational
transformation algorithms: Challenges, issues and achievements. In-
ternational Journal of Computer Applications 3, 12 (July 2010), 30–38.
https://doi.org/10.5120/787-1115

[19] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decen-
tralized structured storage system. ACM SIGOPS Operating Systems
Review 44, 2 (2010), 35–40.

[20] Paul Leach, Michael Mealling, and Rich Salz. 2005. A Universally
Unique IDentifier (UUID) URN Namespace. RFC 4122. https://www.rfc-
editor.org/rfc/rfc4122.txt

[21] Ralf Merkle. 1982. Method of providing digital signatures. US
patent 4309569. The Board Of Trustees Of The Leland Stanford Junior
University.

[22] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2015.
Yjs: A Framework for Near Real-Time P2P Shared Editing on Arbitrary
Data Types. In Engineering the Web in the Big Data Era. Springer
International Publishing, Cham, 675–678.

[23] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2016.
Near Real-Time Peer-to-Peer Shared Editing on Extensible Data Types.
In Proceedings of the 19th International Conference on Supporting Group
Work (GROUP ’16). ACM, New York, NY, USA, 39–49. https://doi.org/
10.1145/2957276.2957310

[24] Jakob Nielsen. 1993. Usability Engineering. Nielsen Norman Group.
https://www.nngroup.com/books/usability-engineering/

[25] Jakob Nielsen. 2010. Website Response Times.
https://www.nngroup.com/articles/website-response-times/.

[26] Nuno Preguiça, Marek Zawirski, Annette Bieniusa, Sérgio Duarte,
Valter Balegas, Carlos Baquero, and Marc Shapiro. 2014. Swiftcloud:
Fault-tolerant geo-replication integrated all the way to the client ma-
chine. In 2014 IEEE 33rd International Symposium on Reliable Distributed
Systems Workshops. IEEE, 30–33.

[27] Venugopalan Ramasubramanian, Thomas L Rodeheffer, Douglas B
Terry, Meg Walraed-Sullivan, Ted Wobber, Catherine C Marshall, and
Amin Vahdat. 2009. Cimbiosys: A platform for content-based partial
replication. In Proceedings of the 6th USENIX symposium on Networked
systems design and implementation. 261–276.

[28] Ronald Rivest. 1992. The MD5 Message-Digest Algorithm. RFC 1321.
https://www.rfc-editor.org/rfc/rfc1321.txt

[29] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011.
Replicated abstract data types: Building blocks for collaborative ap-
plications. J. Parallel and Distrib. Comput. 71, 3 (2011), 354–368.
https://doi.org/10.1016/j.jpdc.2010.12.006

[30] Marc Shapiro, Nuno Perguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In SSS 2011 - 13th Inter-
national Symposium Stabilization, Safety, and Security of Distributed
Systems (Lecture Notes in Computer Science), Xavier Défago, Franck
Petit, and Vincent Villain (Eds.), Vol. 6976. Springer Berlin Heidelberg,
Berlin, Heidelberg, 386–400.

[31] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. A comprehensive study of Convergent and Commutative Repli-
cated Data Types. Research Report RR-7506. Inria – Centre Paris-
Rocquencourt ; INRIA. 50 pages. https://hal.inria.fr/inria-00555588

[32] Albert van der Linde, Pedro Fouto, João Leitão, Nuno Preguiça, Santi-
ago Castiñeira, and Annette Bieniusa. 2017. Legion: Enriching Internet
Services with Peer-to-Peer Interactions. In Proceedings of the 26th In-
ternational Conference on World Wide Web (WWW ’17). International
World Wide Web Conferences Steering Committee, Republic and Can-
ton of Geneva, Switzerland, 283–292. https://doi.org/10.1145/3038912.
3052673

[33] Albert van der Linde, João Leitão, and Nuno Preguiça. 2016. ∆-CRDTs:
Making ∆-CRDTs Delta-based. In Proceedings of the 2Nd Workshop on
the Principles and Practice of Consistency for Distributed Data (PaPoC
’16). ACM, New York, NY, USA, Article 12, 4 pages. https://doi.org/10.
1145/2911151.2911163

13

https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.1145/2851613.2851641
https://www.rfc-editor.org/rfc/rfc7158.txt
https://doi.org/10.1109/IFIPNetworking.2016.7497258
https://doi.org/10.1109/IFIPNetworking.2016.7497258
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/66926.66963
https://doi.org/10.1145/66926.66963
https://doi.org/10.1145/2957319.2957374
https://doi.org/10.1145/2957319.2957374
https://doi.org/10.1109/SRDS.2017.28
https://www.w3.org/TR/2012/CR-websockets-20120920/
https://www.w3.org/TR/2012/CR-websockets-20120920/
http://martin.kleppmann.com/papers/automerge-mobiuk18.pdf
http://martin.kleppmann.com/papers/automerge-mobiuk18.pdf
https://doi.org/10.5120/787-1115
https://www.rfc-editor.org/rfc/rfc4122.txt
https://www.rfc-editor.org/rfc/rfc4122.txt
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1145/2957276.2957310
https://www.nngroup.com/books/usability-engineering/
https://www.rfc-editor.org/rfc/rfc1321.txt
https://doi.org/10.1016/j.jpdc.2010.12.006
https://hal.inria.fr/inria-00555588
https://doi.org/10.1145/3038912.3052673
https://doi.org/10.1145/3038912.3052673
https://doi.org/10.1145/2911151.2911163
https://doi.org/10.1145/2911151.2911163


Anon. Submission Id: 75

[34] Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Car-
los Baquero, Marc Shapiro, and Nuno Preguiça. 2013. SwiftCloud: Fault-
Tolerant Geo-Replication Integrated all the Way to the Client Machine.
Research Report RR-8347. INRIA. https://hal.inria.fr/hal-00870225

[35] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa,
Valter Balegas, and Marc Shapiro. 2015. Write Fast, Read in the Past:
Causal Consistency for Client-side Applications. Research Report RR-
8729. Inria. https://hal.inria.fr/hal-01158370

[36] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa,
Valter Balegas, and Marc Shapiro. 2015. Write Fast, Read in the Past:
Causal Consistency for Client-Side Applications. In Proceedings of the
16th Annual Middleware Conference (Middleware ’15). ACM, New York,
NY, USA, 75–87. https://doi.org/10.1145/2814576.2814733

[37] 2018. Akka. https://doc.akka.io/docs/akka/current/distributed-
data.html.

[38] 2014. Antidote. http://syncfree.github.io/antidote.
[39] 2017. Automerge. https://github.com/automerge/automerge.

[40] 2019. Azure. https://azure.microsoft.com.
[41] 2009. Apache Cassandra. https://cassandra.apache.org.
[42] 2005. CouchDB. https://couchdb.apache.org.
[43] 2011. Fabric.js. https://github.com/fabricjs/fabric.js.
[44] 2005. Git. https://git-scm.com/.
[45] 2018. Google Docs. https://support.google.com/docs/answer/2494822.
[46] 2016. Legion. https://github.com/albertlinde/Legion.
[47] 2009. MongoDB. https://www.mongodb.com/.
[48] 2019. opensignal.com. https://www.opensignal.com/reports/2019/01/usa/mobile-

network-experience.
[49] 2013. PouchDB. https://pouchdb.com.
[50] 2010. Riak. http://docs.basho.com/riak/kv.
[51] 2013. ShareDB. https://github.com/share/sharedb.
[52] 2018. Speedtest.net. http://www.speedtest.net/reports/united-

states/2018/Mobile/.
[53] 2013. Swarm.js. https://github.com/gritzko/swarm.
[54] 2014. Yjs. https://github.com/y-js/yjs.

14

https://hal.inria.fr/hal-00870225
https://hal.inria.fr/hal-01158370
https://doi.org/10.1145/2814576.2814733

	Abstract
	1 Introduction
	2 Motivation, Background and Approach
	2.1 Case studies
	2.2 Background, principles and approach

	3 The OWebSync Data Model
	4 Web-based synchronization architecture
	5 Performance evaluation
	6 Related work
	7 Conclusion
	References

