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Abstract
The web is shifting to a client-centric model where web

clients become the leading execution environment for ap-

plication logic and data storage. However, current state-of-

the-art peer-to-peer middlewares for web applications focus

on data synchronization, e.g using CRDTs, and only sup-

port operation in a fully trusted client network. The rise

of blockchain platforms has opened up many use cases to

setup decentralized networks that enable mistrusting par-

ties to work together. However, public blockchains require

large amounts of storage space and computation power, of-

fer slow latency, and charge high transaction fees. Private

blockchains are faster but are hard to set up and require a

large back-end infrastructure.

This paper presents WebLedger, a browser-based middle-

ware for decentralized web applications in small, community-

driven networks. We propose a novel, optimistic, leaderless

consensus protocol, tolerating Byzantine replicas, combined

with a robust and efficient state-based synchronization pro-

tocol based on state-based CRDTs. WebLedger uses an opti-

mized BLS scheme for efficient aggregation and storage of

signatures. No large back-end infrastructure is required, as

themiddleware is purely browser-based, and transactions are

confirmed within seconds. No transaction log or blockchain

is stored, keeping the overall storage footprint small.

1 Introduction
Small-scale, citizen-driven networks can open the road to use

cases in the sharing economy, such as car-sharing in a local

neighborhood. They also enable small merchant networks

with use cases such as loyalty cards at a farmer’s market or

a local shopping street. In such community-driven collabora-

tive distributed systems, web applications are evolving into a

decentralized, client-centric architecture in which browsers

become the leading execution environment for application

logic and data storage. Browsers and client-side web tech-

nology also offer more and more capabilities to enable fully

client-side web applications that can operate independently

and in a stand-alone fashion, in contrast to the server-centric

model [8, 30]. This vision is also supported by Tim Berners-

Lee [14], the founder of the web: the web should evolve into

a decentralized network. Therefore browsers need to shift

from the client-server paradigm to a peer-to-peer approach.

However, state-of-the-art peer-to-peer data synchroniza-

tion systems for the browser like Legion [79], Yjs [61], and

Automerge [41] focus on full replication and consistency

between fully trusted peers. Each replica can modify all data,

and all modifications to the data are automatically replicated

to all other replicas. Their synchronization protocols lack

Byzantine fault-tolerance (BFT). BFT means that a system

can both tolerate crash failures, as well as malicious replicas.

Traditionally, distrust between interacting parties is solved

using a centralized trusted party. While this is often bene-

ficial for performance, a lot of power is given to one party,

that can decide to manipulate the data and charge high trans-

action costs. When trust is lacking, one can opt for a more

decentralized consensus between several mistrusting par-

ties. Starting with Bitcoin [59], many Proof-of-Work (PoW)

blockchains emerged. However, their confirmation time is

too slow for many use cases, and they typically lack finality.

Bitcoin needs about one hour to confirm a transaction with

a high probability. Moreover, PoW needs a lot of processing

power and energy which are not available on mobile devices.

Blockchains also store an immutable history of all transac-

tions on every replica, leading to large storage overhead.

Lightweight clients that use a proxy node to communicate

with the blockchain exist, but some party still needs to man-

age the full node, which clients need to trust. Other types of

blockchain use a BFT consensus protocol. Hyperledger Fab-

ric [3] can use BFT-SMART [15] and achieves high through-

put and low latency. However, it requires a complex back-end

infrastructure, with many different servers, and replicas still

need to store the full operation-based transaction history.

In this paper we presentWebLedger, a web middleware for

decentralized, community-driven, web applications between

mistrusting clients that supports a client-centric, browser-

based, and state-based ledger with a low infrastructure and

storage footprint. The state-based ledger does not keep track

of an operation log or transaction history in a blockchain.

The ledger is fully maintained, synchronized, and agreed on

by mobile clients in their web browser. To achieve this, Web-

Ledger combines the following key technical contributions:

• Lightweight, leaderless, client-side Byzantine Fault

Tolerant synchronization and consensus.

• Optimistic consensus using a fast path when nobody

is acting Byzantine, gracefully degrading to the slow

path when under attack.

• Efficient computation and compact storage of signa-

tures using an optimized BLS signature scheme.

• Efficient, robust, state-based synchronization and com-

pact storage using state-based CRDTs, instead of stor-

ing a chain of transactions.
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Our evaluation, using our application use case of inte-

grated loyalty points, shows that applications using the Web-

Ledger middleware can achieve realistic confirmation times

and finality for typical business transactions and transaction

rates. WebLedger achieves a latency of less than 2 seconds in

optimal environments, and less than 5 seconds in worst-case

Byzantine environments. In our example, safety and liveness

can even be guaranteed within communities of 80 merchants

and a throughput of one transaction per second.

Section 2 further discusses some motivating use cases and

background. Section 3 presents WebLedger’s BFT consensus

protocol that is both optimistic and state-based. The detailed

web-based middleware architecture of WebLedger is elabo-

rated in Section 4. Our evaluation in Section 5 focuses on

many aspects of performance in both normal scenario’s as

well as Byzantine scenarios. Section 6 elaborates on impor-

tant related work. We conclude in Section 7.
1

2 Motivation and background
This section further motivates the need for a lightweight, ro-

bust consensusmiddleware by describing several community-

driven use cases. Then we give some background on state-

of-the-art approaches using a blockchain and their problems.

We start with public blockchains, such as Bitcoin [59] and

Ethereum [82], which are too slow and have high transaction

costs. We end with private blockchains, such as Hyperledger

Fabric [3], which require a large back-end infrastructure.

2.1 Motivational use cases
We describe three use cases that would benefit from the

lightweight consensus offered by WebLedger. They all in-

volve business transactions happening in real life and need

interactive performance, rather than high throughput.

Sharing economy. Small communities, such as an apart-

ment building or local neighborhood, can share tools or

cars [49] with each other using a P2P platform to keep

track of the current possession and reservation of tools and

cars [68]. When a tool is being exchanged, it is checked on

potential damage which can be registered in the network.

Microloans. Microloans enable individuals, rather than

banks, to issue loans to other individuals or small businesses.

This has the advantage that also individuals with a bad credit

rating or without enough collateral can receive a loan. This

community initiative can prevent loan sharks, especially in

developing countries.

Loyalty programs. Integrated loyalty programs can be

more effective than traditional loyalty programs that are

1
A preliminary workshop paper [9] already described our use case of loyalty

points in more detail together with an early solution. This paper presents

the full technical results and includes a novel consensus algorithm with

stronger liveness guarantees and the state-based replication protocol, the

use of aggregate signatures and WebAssembly, and an extensive evaluation.

limited to a single company [29]. Think about airlines who

award miles which can be redeemed with several partners.

Such collaborations usually introduce an extra trusted inter-

mediary and addmore layers of management and operational

logistics. This trusted party can charge high transaction costs

to be part of the integrated network. For small merchants on

a farmer’s market or in a local shopping street, this opera-

tional overhead is too much of a burden. A decentralized P2P

network can enable fast and secure creation, redemption, and

exchange of loyalty points across the different merchants.

In the remainder of this paper, we focus on the loyalty

use case, as this use case has the largest scale in terms of the

transaction throughput and the number of participants.

2.2 Background on blockchains
Existing blockchains can be roughly split into two categories:

public and permissioned blockchains. Public blockchains

are open for everyone to participate in. Two examples are

Bitcoin [59] and Ethereum [82]. Bitcoin allows everyone

to host a replica node and submit transactions. However,

Bitcoin is quite slow, as a new block is only created every

10 minutes on average. This means that transactions take

on average 10 minutes to be confirmed by the network. But

as multiple conflicting chains can occur, one must wait for

at least 6 blocks to be sure that a transaction will not be

reverted. This increases the total latency to one hour, which

is too slow for many of the motivational use cases. Ethereum

is another public blockchain with a much faster average

block time, and consequently a lower latency. Ethereum

allows everyone to write smart-contracts to be executed by

the Ethereum network. Each invocation of a contract costs

a small amount of Ether (called gas). This makes Ethereum

infeasible for small business transactions such as loyalty

points, as the total cost will become too high.

Permissioned or private blockchains use access control to

limit who can see and create transactions on the blockchain.

Because they can only be accessed by a limited number of

known parties, transaction fees are not required to reward

miners and combat spam. An example is Hyperledger Fab-

ric [3]. These private blockchains can use a Byzantine Fault

Tolerant consensus protocol to reach consensus over which

transactions to execute and in which order. They have much

smaller latency and can process more transactions per sec-

ond compared to the public blockchains. However, to set

up Hyperledger Fabric, there is a large back-end infrastruc-

ture required. The actual blockchain network consists of

many nodes: peers and orderers. Peers store the blockchain

and execute chain-code, and the orderers establish a total

order on the transactions. To store the blockchain, all peers

need a CouchDB server. A web application can communicate

with the blockchain using a REST-server. Every participant

needs their own REST-server, as this server contains their

private key. At last, a membership service is required, with

one certificate authority server for every participant.
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Setting up and managing their own peer server, their own

REST server, and their own CouchDB server requires a lot

of infrastructural management for small merchants. They

do not have the knowledge nor budget for such a deploy-

ment, especially considering the maintenance overhead and

resource costs. These small merchants want to quickly set up

an integrated loyalty network with minimal back-end setup.

However, most of them already own a desktop or mobile

computer such as a laptop or tablet.

The three community-driven use cases have a need for a

lightweight, web-based middleware platform. Blockchains

cannot simultaneously achieve interactive performance and

be easy to set up and maintain. The next section explains a

state-based consensus protocol, which is used in Section 4

for a lightweight, browser-based middleware, called Web-

Ledger. WebLedger can be used to set up a decentralized,

peer-to-peer data synchronization and consensus network

with no transaction fees, fast confirmation times, and mini-

mal infrastructure requirements.

3 Optimistic state-based BFT consensus
This section explains the state-based consensus protocol

used in WebLedger. First, it describes the communication

and adversary model. Then it explains the detailed consen-

sus protocol, followed by the state-based communication

protocol. At last, this section discusses safety and liveness.

3.1 Adversary Model and overview
The core protocol is a partially synchronous, leaderless, Byzan-

tine consensus protocol. Communication is partially syn-

chronous if there is an unknown upper bound Δ on message

delivery [26]. An adversary can delay the network for a fi-

nite amount of time, however, after at most Δ, some stream

of messages can be delivered. This bound on communica-

tion is necessary as deterministic Byzantine consensus is not

possible with fully asynchronous communication [28]. An

adversary might also corrupt up to ⌊ 1
3
× (𝑛 − 1)⌋ replicas,

where 𝑛 is the total number of replicas. They can deviate

from the protocol in any arbitrary way. Such replicas are

called Byzantine replicas, while the replicas that are strictly

following the protocol are called honest replicas. We assume

attackers cannot forge the used asymmetric signatures or

find collisions for the used cryptographic hash functions.

The protocol is used to implement an Atomic Register [45].

A register is a data structure that can hold a single value that

can be read and written. An Atomic Register is a register

where all writes are atomic, meaning that only a single state-

transition can happen at any time. This enables us to apply

conditions on which state-transitions are valid, based on the

current state. The protocol does not use a leader to coordinate

the protocol, removing a common performance bottleneck

compared to many existing BFT protocols. The consensus

protocol uses voting, where every replica has exactly one

vote. One or more replicas propose a new value. Other repli-

cas start voting on those proposals. Once a proposal has

reached a supermajority of at least ⌊ 2
3
× 𝑛 + 1⌋ votes (with 𝑛

the total number of replicas), the proposal is accepted and

becomes the new value. Unlike blockchains, consensus is

reached for each register separately, and there is no chain

of transactions. Only the current state and proposals for the

next state are stored. The next section explains this protocol

in more detail.

3.2 Detailed protocol
The detailed protocol of an Atomic Register is depicted in

Figure 1. Each register has its own state which consists of

the current value, and zero or more proposals for new val-

ues. The current value is signed by a supermajority of the

replicas. Each proposal is a tuple of the version number, the

round number, the new value, and all the signatures of all

replicas that vote for this proposal. The version number is a

monotonically increasing integer. The round number is also

an integer which increases for a given version number. It

resets to zero each time the version number is increased.

An Atomic Register supports three operations:

• GET: returns the current value,
• SET: submits a proposal for a new value,

• MERGE: merges the state of a replica with the state of

another replica for the same register.

The GET operation returns the value of the currently accepted
value if any, otherwise it returns null. The SET operation

creates a new proposal with an increased version number, a

round number equal to zero, and the new value. This proposal

is signed by the proposing replica and added to the proposed

set. The MERGE operation gets as input the state of another

replica and advances the current local state. The new value

will be the most recent one. This is the value with the highest

version number. Since each accepted value is always signed

by a supermajority of the replicas, it can be accepted without

the need to verify intermediate versions. The new set of

proposals is the union between the local and received set of

proposals. All proposals that belong to a smaller or equal

version than the accepted value can be discarded. If there are

proposals left, and this replica has not yet voted for a proposal

in this round, the replica votes for the currently winning

proposal. This is the proposal with the most votes so far.

By voting on the current winner, consensus can be reached

faster, as there is less chance of ending up in a split vote.

An honest replica can only vote for a proposal when it has

not voted for any other proposal with the same version and

round number. If any of the proposals has reached enough

votes to hold a supermajority of ⌊ 2
3
×𝑛+1⌋ votes, the proposal

is accepted and the current value is replaced by the accepted

proposal. Any other proposals can be removed.

Split-votes. It can also happen that multiple proposals

are submitted concurrently and that those proposals all get
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1: define
2: I; Σ;B;N ⊲ replica IDs; signatures; bytes; integers

3: S ≡ P(I × Σ); I × Σ ≡ ΣI
4: P ≡ P(N × N × B × S) ⊲ version, round, value, sigs

5: initial state
6: 𝑉 ← ⊥ ∈ P ∪ {⊥} ⊲ current value

7: 𝑃 ← ∅ ⊂ P ⊲ set of current proposals

8: 𝐼 ∈ I ⊲ replica ID

9: 𝐼𝐷 ∈ B ⊲ register ID

10: 𝑄 ∈ N ⊲ quorum size, ⌊ 2
3
× 𝑛 + 1⌋

11: procedure get
12: if 𝑉 ≠ ⊥ then
13: return 𝑉𝑣𝑎𝑙𝑢𝑒
14: else
15: return ⊥
16: procedure set(𝑣 ∈ B)
17: if ¬ _has_voted then
18: 𝜎𝐼 ∈ Σ← sign(𝐼𝐷,𝑉𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 1, 0, 𝑣𝑎𝑙𝑢𝑒)
19: 𝑃 ← 𝑃 ∪ {(𝑉𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 1, 0, 𝑣𝑎𝑙𝑢𝑒, {𝜎𝐼 })}
20: else ⊲ wait until current consensus is reached

21: procedure merge(𝑉 ′, 𝑃 ′, 𝐼 ′)
22: if 𝑉 ′𝑣𝑒𝑟𝑠𝑖𝑜𝑛 > 𝑉𝑣𝑒𝑟𝑠𝑖𝑜𝑛 then
23: if ¬verify(𝑉 ′𝑠𝑖𝑔𝑠 ) then
24: return distrust(𝐼 ′)
25: else
26: 𝑉 ← 𝑉 ′

27: if ∃ 𝑝 ∈ 𝑃 ′ : 𝑝𝑟𝑜𝑢𝑛𝑑 > 0 ∧ ¬verify(𝑝𝑠𝑖𝑔𝑠 ) then
28: return distrust(𝐼 ′)
29: 𝑃 ← {𝑝 ∈ 𝑃 ∪ 𝑃 ′ : 𝑝𝑣𝑒𝑟𝑠𝑖𝑜𝑛 > 𝑉𝑣𝑒𝑟𝑠𝑖𝑜𝑛}
30: if ¬ _has_voted then
31: ⊲ vote on current winning proposal

32: 𝑝 ←𝑚𝑎𝑥𝑛𝑏_𝑜 𝑓 _𝑠𝑖𝑔𝑠 {𝑃}
33: 𝜎𝐼 ∈ Σ← sign(𝐼𝐷, 𝑝𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑝𝑟𝑜𝑢𝑛𝑑 , 𝑝𝑣𝑎𝑙𝑢𝑒 )
34: 𝑝𝑠𝑖𝑔𝑠 ← 𝑝𝑠𝑖𝑔𝑠 ∪ {𝜎𝐼 }
35: if ∃ 𝑝 ∈ 𝑃 : size(𝑝𝑠𝑖𝑔𝑠 ) > 𝑄 then
36: 𝑟 ← 𝑝𝑟𝑜𝑢𝑛𝑑
37: if 𝑟 = 0 ∧ ¬verify(𝑝𝑠𝑖𝑔𝑠 ) then
38: 𝜎𝐼 ∈ Σ← sign(𝐼𝐷,𝑉𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 1, 𝑟 + 1, 𝑝𝑣𝑎𝑙𝑢𝑒 )
39: 𝑃 ← 𝑃 ∪ {(𝑉𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 1, 𝑟 + 1, 𝑝𝑣𝑎𝑙𝑢𝑒 , {𝜎𝐼 })}
40: else ⊲ accept winner as new value

41: 𝑉 ← 𝑝

42: 𝑃 ← ∅
43: 𝑟 ←𝑚𝑎𝑥{𝑝𝑟𝑜𝑢𝑛𝑑 ∈ N : 𝑝 ∈ 𝑃}
44: if

∑
𝑝∈𝑃∧𝑝𝑟𝑜𝑢𝑛𝑑=𝑟 size(𝑝𝑠𝑖𝑔𝑠 ) > 𝑄 then

45: ⊲ possibly blocked, start new round

46: 𝑝 ←𝑚𝑎𝑥𝑛𝑏_𝑜 𝑓 _𝑠𝑖𝑔𝑠 {𝑃}
47: 𝜎𝐼 ∈ Σ← sign(𝐼𝐷,𝑉𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 1, 𝑟 + 1, 𝑝𝑣𝑎𝑙𝑢𝑒 )
48: 𝑃 ← 𝑃 ∪ {(𝑉𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 1, 𝑟 + 1, 𝑝𝑣𝑎𝑙𝑢𝑒 , {𝜎𝐼 })}
49: procedure _has_voted
50: 𝑟 ←𝑚𝑎𝑥{𝑝𝑟𝑜𝑢𝑛𝑑 ∈ N : 𝑝 ∈ 𝑃}
51: return ∃ 𝑝 ∈ 𝑃 : 𝑝𝑟𝑜𝑢𝑛𝑑 = 𝑟 ∧ (𝐼 , _) ∈ 𝑝𝑠𝑖𝑔𝑠

Figure 1. Consensus protocol for the Atomic Register.

a portion of the votes, and no supermajority is reached. If a

replica detects that this happened, it creates a new proposal

with the value of the currently winning one and increases

the round number for that proposal by one. A new round

is started, and all replicas have a new chance to vote. Since

all honest replicas are voting on the winning proposals, it

is likely that in only a few rounds one of the proposals will

have reached a supermajority. This concept is known as

meta-stability [70, 71].

In practice, however, it is not possible to reliably detect

if the consensus is blocked. Up to ⌊ 1
3
× (𝑛 − 1)⌋ replicas

can act Byzantine, including not sending anything at all.

This means that after receiving ⌊ 2
3
× 𝑛 + 1⌋ votes, a replica

needs to make a choice, as it is possible that no more votes

will arrive any longer. If all those votes are for the same

proposal, a supermajority is reached and a new value is

selected. Otherwise, the replica assumes that the consensus

is blocked and start a new round.

Proof sketch. The remaining of this paragraph proofs that

this assumption is safe.We call the number of Byzantine repli-

cas 𝐹 = ⌊ 1
3
×(𝑛−1)⌋ and the supermajority𝑄 = ⌊ 2

3
×𝑛+1⌋. By

definition:𝑄 = 2×𝐹 +1. Now assume we have two proposals

that together have 𝑄 votes. In the worst case, the votes are

split evenly over the two proposals, for example, 𝐹 + 1 votes
for the first proposal, and 𝐹 votes for the second one. Since

the remaining 𝐹 votes can all belong to Byzantine replicas,

which might simply not answer, the replica decides to start

a new round, using the value of the first proposal. There

is still a chance that the old round will reach the required

supermajority (𝑄) for the first proposal ((𝐹 + 1) + 𝐹 = 𝑄), as

some votes might not have reached this replica yet. How-

ever, it can never receive enough votes to accept the second

proposal (𝐹 + 𝐹 < 𝑄). So in both cases, the first proposal

is selected, and the solution is safe. Another possibility is

that another replica sees that the second proposal has more

votes, and will start a new round using this value. In this

case, the old round cannot yield any result in the future, as

both proposals already have more than 𝐹 + 1 votes. Hence,
none of them can reach the required 𝑄 votes. So also in this

case, the solution is safe, and the next rounds will decide on

which value to choose.

Optimistic BFT consensus. The outlined protocol is re-

silient against Byzantine actors. However, it includes a costly

verification step each time a new state is received (Figure 1,

line 27). If none of the replicas are acting Byzantine, this step

can be delayed until a supermajority is reached (Figure 1,

line 37). When the verification succeeds at that time, it is

safe to accept the proposal as the new value. However, if the

verification fails, the proposal cannot be accepted and it is

not possible to find out which replicas are Byzantine.

The protocol uses a hybrid approach starting with a fast

path for round numbers equal to zero. When verification in

the end fails, a new round is created and the verification for
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𝐴 ⊥, ∅ ⊥, {(1, 0, 5, {𝜎𝐴})}
𝑠𝑒𝑡 (5)

(1, 0, 5, {𝜎𝐴, 𝜎𝐵, 𝜎𝐶 }), ∅

𝐵 ⊥, ∅ ⊥, {(1, 0, 5, {𝜎𝐴, 𝜎𝐵})} (1, 0, 5, {𝜎𝐴, 𝜎𝐵, 𝜎𝐶 }), ∅

𝐶 ⊥, ∅ ⊥, {(1, 0, 5, {𝜎𝐴, 𝜎𝐶 })} (1, 0, 5, {𝜎𝐴, 𝜎𝐵, 𝜎𝐶 }), ∅

𝐷 ⊥, ∅ ⊥, {1, 0, 7, {𝜎𝐷 })}
𝑠𝑒𝑡 (7)

(1, 0, 5, {𝜎𝐴, 𝜎𝐵, 𝜎𝐶 }), ∅

Figure 2. State-based synchronization of an Atomic Register with 4 replicas 𝐴, 𝐵,𝐶, 𝐷 ∈ I. Each state is denoted as the current

value and the set of current proposals for the next value, containing tuples of (𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑟𝑜𝑢𝑛𝑑 , 𝑣𝑎𝑙𝑢𝑒 , 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠).

all the following rounds is done every time a new state is re-

ceived. This slow path is used until consensus is reached. The

next time a new proposal is submitted for the next version,

the round number will again be zero and the fast path will

be used. This hybrid approach enables very fast consensus

when all replicas are honest, while gracefully degrading to a

slower, more costly protocol that can detect which replicas

are actively acting Byzantine.

3.3 Data synchronization protocol
The previous section described the conceptual consensus

protocol. This section explains how the state of an Atomic

Register is replicated to other replicas.

The state of an Atomic Register, consisting of the cur-

rent value and the set of proposals, is a state-based Conflict-

free Replicated Data Type (CRDT) [74]. By using a state-

based approach, rather than the operation-based approach

of operation-based CRDTs, Operational Transformation [27],

or blockchains, we only need to store the current state to-

gether with some metadata. This metadata is the version

number and the set of current proposals. Replicas do not

need to keep track of the state of other replicas, or which

messages are already received by which replica. Continu-

ously, all the replicas exchange their current state with each

other, similarly to a gossip protocol. Each time a new state

is received, the local state is merged with this received state

using the MERGE procedure in Figure 1.

An example of this process is shown in Figure 2. There are

four non-Byzantine replicas with an empty initial state. The

state is presented as the current value, followed by the set

of proposals. Each proposal lists the version, the round, the

value, and the set of signatures of the replicas that voted for

that proposal. The scenario starts with replica A and D both

proposing a new, conflicting, value. The state is replicated

to the other replicas randomly, and all replicas aggregate

the votes in the set of signatures. Once enough votes are

aggregated for value 5, it is accepted as the current value.

Eventually, replica D sees a new accepted version and dis-

cards its own proposal. In the end, all replicas accept the

same value as the new value for the Atomic Register.

WebLedger uses Merkle-trees [54] to efficiently synchro-

nize only the state of the registers that require an update [24].

Our approach is similar to Merkle Search Trees [10]. If the

state of two replicas is exactly the same, only the root hash

is sent and compared, which limits the network usage. If the

states differ, the protocol descends in the Merkle-tree looking

for the mismatching hashes to find out which registers must

be synchronized.

3.4 Safety and liveness
Safety means that when two honest replicas decide on a new

value, this value is the same. Liveness means that when new

values are proposed, eventually one of them is accepted as

the new value. The protocol described before guarantees

both safety and liveness when there are at least ⌊ 2
3
× 𝑛 +

1⌋ honest replicas available. Safety is always chosen over

liveness. When there are not enough honest replicas online

to reach a supermajority, no consensus can be reached and

the protocol will wait for more votes. All those replicas do

not need to be online at the same time, since the state is

replicated to all available replicas, and votes can be verified

by all replicas. The protocol fails to guarantee safety when

there are more than ⌊ 1
3
× (𝑛 − 1)⌋ Byzantine replicas.

4 Architecture and implementation
This section describes the architecture, deployment, and

implementation of WebLedger. This middleware architecture

is key to support the BFT consensus and synchronization

protocol described in the previous section. The middleware

is fully web-based and can execute in any recent browser

without any plugins. This section first describes the overall

architecture. Then it explains our use of aggregate signatures

using the BLS-scheme to reduce the size of the set of votes in

each proposal. The last subsection lists several performance

optimization tactics.

4.1 Overall architecture
The WebLedger middleware architecture consists of five

main components (see Figure 3): (i) a public interface compo-

nents that offers an API for developers, (ii) a peer-to-peer
5
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Figure 3. Browser-based architecture of WebLedger.

network component to communicate directly with other

browsers, (iii) a consensus component to handle the consen-

sus protocol described in the previous section, (iv) amember-
ship component to handle all cryptographic operations, and

(v) a store component to save all state to persistent storage.

(i) Public interface. The Public interface component pro-

vides an API to application developers to use this middleware.

It provides four functions to modify the application state:

• GET(key) returns the current value of the atomic reg-

ister at the given key,

• SET(key, value) submits a proposal to update the

atomic register at the given key,

• DELETE(key) deletes the atomic register at the given

key. A tombstone is kept for correct replication,

• LISTEN(key, callback) supports reactive program-

ming by calling the given callback with the new value

each time the value of the atomic register at the given

key changes.

The GET and SET operations are equivalent with the opera-

tions in Figure 1. Apart from those functions, the middleware

also provides a constructor function to initialize the middle-

ware by passing the following configuration as parameters:

• the list of all members of the network, together with

their public key,

• the private key of the replica,

• the URL to the signaling server to set up the peer-to-

peer connections,

• an access-control callback function to verify state-

changes.

This access-control callback function is called before voting

for a new proposed value, with both the old and new values

as arguments. It should return a boolean whether to allow

this change or not. This callback enables the implementation

of basic access control policies on the values. One example

is to embed the public key of the owner into the value and

requiring each new value to be signed by the owner. This

enables a value to be only changed by a single party, and

also supports passing ownership by changing the embedded

public key.

(ii) Peer-to-peer network. The P2P Network component

manages the peer-to-peer network and is responsible for

the replication of the state-based CRDTs. Many browser-

based replicas are connected to each other using WebRTC

(Web Real-Time Communications) [38]. WebRTC enables

a browser to communicate peer-to-peer. However, to set

up those peer-to-peer connections, WebRTC needs a signal-

ing server to exchange several control messages. Once the

connection is set up, all communication can happen peer-to-

peer, without a central server. Another WebRTC connection

can also be used as a signaling layer, so once a replica is

connected to another one, it can also connect to all of its

peers, without the need of a central signaling server. In our

adversary model, this server is assumed to be trusted. If this

signaling server would be malicious, the safety of the system

is not endangered as no actual data is sent to this central

server. However, some peers might not be able to join the net-

work and the required supermajority might not be reached,

which violates liveness. The use of multiple independent

signaling servers can lower the risk of this happening.

(iii) Consensus. The Consensus component handles the

consensus protocol described in Section 3. It maintains a

Merkle-tree of all atomic registers and uses state-based CRDTs

to replicate the local state to other replicas using the P2P
Network component. The Merkle-tree is constructed using

the Blake3 [63] cryptographic hash function.

(iv) Membership. The Membership component contains

all cryptographic material and is responsible for the signing

and verification operations. The Consensus component uses

this for all cryptographic operations. We implemented two

different versions of this component, one using ECDSA for

signatures using the built-in WebCrypto [81] browser API

(not shown in Figure 3), and a second implementation using

an aggregate signature scheme called BLS [18]. Section 4.2

provides more details about the BLS implementation.

(v) Store. At last, the Store component saves all state to

the IndexedDB [1] database. IndexedDB is a key-value data-

store built inside the browser. Each atomic register and the

Merkle-tree are serialized to bytes and stored here under the

6
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respective key. This enables users to close the browser and

continue afterward without losing the current state.

4.2 Aggregate signatures using BLS
The consensus protocol in Section 3 is aggregation and veri-

fication intensive in terms of digital signatures. Signatures

must be continuously collected and verified. This means, in

every intermediate state of a transaction, each party needs

to keep track of all incoming signatures and verify them

to prevent malicious scenarios. Persistence, management,

and transmission of these signatures are costly, especially

in a browser-based setting. Therefore, our protocol requires

short signatures to reduce storage and network footprint.

Boneh–Lynn–Shacham (BLS) [18] presented a signature

scheme based on bilinear pairing on elliptic curves. The size

of a single signature produced by BLS is short, since a signa-

ture is an element of an elliptic curve group. The aggregation

algorithm [17] outputs a single signature as short as the oth-

ers, unlike other approaches that rely on ECDSA or DSA

(e.g. Schnorr [73]). These approaches require the protocol to

store all signatures for aggregation and verification.

It turns out that this scheme is insecure against rogue

public-key attacks [69]. To perform such an attack, an ad-

versary provides the verification function with a malicious

public key to convince a verifier that a victim has also signed

the message𝑚; however, the victim has never signed𝑚. The

remedy is either each party proves its knowledge of his secret

key or employing distinct messages. To avoid these costly

mitigation strategies, Boneh et al. [16] presented a modi-

fied BLS scheme retaining the aforementioned defenses with

no extra interaction and minimal computational complexity.

We leveraged this scheme in the most efficient way based

on our setting, as well as improved the signature aggrega-

tion. For the interested reader, we provide the mathematical

background and formal specification of our optimized BLS

scheme in Figure 4.

Efficient aggregation. The protocol described in Section 3
performs a considerable number of signature aggregations.

But the standard scheme is vulnerable to rogue public-key

attacks. The state-of-the-art approach [16] to mitigate such

attacks is to compute (𝑡1, ..., 𝑡𝑛) ← H1 (𝑝𝑘1, ..., 𝑝𝑘𝑛) for each
Agg invocation and compute 𝜎 ← ∏𝑛

𝑖=1 𝜎
𝑡𝑖
𝑖
, where 𝑝𝑘𝑖 is

the public key of replica 𝑖 , H1 is a hash function, and 𝜎𝑖 is

a (multi-)signature produced by replica 𝑖 . Although the 𝑡𝑖
values can be cached, the computation of 𝜎 would be costly.

Moreover, Agg does not take as input the same set of public

keys at different states of a transaction in our consensus pro-

tocol. Therefore, we distribute the computations by moving

the calculations of the 𝑡𝑖 and 𝜎
𝑡𝑖
𝑖
values to the signing parties,

and as a result, these computations are performed once. Now,

any replica can run Agg by only computing 𝜎1...𝜎𝑛 . The se-

curity properties of BLS remain intact [16], and we obtain

more efficient aggregations at scale.

G0 and G1 are two multiplicitive cyclic groups of prime or-

der 𝑞. H0 : {0, 1}∗ → G0 and H1 : {0, 1}∗ → Z𝑞 are hash

functions viewed as random oracles.

1. Parameters Generation: PGen(𝜅) sets up a bilinear group

(𝑞,G0,G1,G𝑡 , 𝑒, 𝑔0, 𝑔1) as described by [16]. 𝑒 is an efficient

non-degenerating bilinear map 𝑒 : G0 × G1 → G𝑡 . 𝑔0 and
𝑔1 are generators of the groups G0 and G1. It outputs

𝑝𝑎𝑟𝑎𝑚𝑠 ← (𝑞,G0,G1,G𝑡 , 𝑒, 𝑔0, 𝑔1).
2. Key Generation: KGen(𝑝𝑎𝑟𝑎𝑚𝑠) is a probabilistic algo-

rithm that take as input the security 𝑝𝑎𝑟𝑎𝑚𝑠 , generates

𝑠𝑘
$←− Z𝑞 , computes and sets 𝑝𝑘 ← 𝑔𝑠𝑘

1
, and outputs

(𝑠𝑘, 𝑝𝑘).

3. Signing: Sign(𝑠𝑘,𝑚) is a deterministic algorithm that takes

as input a secret key 𝑠𝑘 and a message 𝑚. It computes

𝑡 ← H1 (𝑝𝑘), and outputs 𝜎 ← H0 (𝑚)𝑠𝑘 ·𝑡 ∈ G0.

4. Key Aggregation: KAgg({(𝑝𝑘𝑖 , 𝑟𝑖 )}𝑛𝑖=1) is a deterministic

algorithm that takes as input a set of public key 𝑝𝑘 and

the multiplicity 𝑟 pairs. It computes 𝑡𝑖 ← H1 (𝑝𝑘𝑖 ), and
outputs 𝑎𝑝𝑘 ←∏𝑛

𝑖=1 𝑝𝑘
𝑡𝑖 ·𝑟𝑖
𝑖

.

5. (Multi-)Signature Aggregation: Agg(𝜎1, ..., 𝜎𝑛) is a deter-

ministic algorithm that takes as input 𝑛 signatures. It out-

puts 𝜎 ←∏𝑛
𝑖=1 𝜎𝑖 .

6. Verification: Ver(𝑎𝑝𝑘,𝑚, 𝜎) is a deterministic algorithm

that takes as input aggregated public keys 𝑎𝑝𝑘 ∈ G1, and

the related message𝑚 and signature 𝜎 ∈ G0. It outputs

𝑒 (𝑔1, 𝜎)
?

= 𝑒 (𝑎𝑝𝑘,H0 (𝑚)).

Figure 4. Formal specification of the BLS signature scheme.

Aggregation of overlapping signatures. Replicas are re-
quired to aggregate multi-signatures in intermediate states

of the consensus protocol. Figure 2 illustrates an example

of such a situation. Replica 𝐵 receives signature 𝜎𝐴; it com-

putes 𝜎𝐵 ; and it aggregates them as 𝜎 (𝐴,𝐵) . Later on, replica
𝐵 receives 𝜎 (𝐴,𝐶) from replica 𝐶 . Aggregation of 𝜎 (𝐴,𝐵) and
𝜎 (𝐴,𝐶) naturally includes a duplicate signature 𝜎𝐴. The sit-

uation becomes worse when replica 𝐵 wants to aggregate

𝜎 (𝐴,𝐴,𝐶,𝐵) and 𝜎 (𝐴,𝐶,𝐵) , which results in 𝜎 (𝐴,𝐴,𝐴,𝐶,𝐶,𝐵,𝐵) (be-
yond Figure 2). Since each (multi-)signature is an element

of an elliptic curve group, we are not aware of any tech-

nique merely relying on BLS to detect overlapping signa-

tures as well as aggregating signatures resulting in ones

with distinct public keys. Therefore, we keep extra metadata

describing the multiplicity 𝑟 of each public key. This infor-

mation is (de)serialized and sent across the network along

with the signatures. We encounter numerous multiplicities

at different stages of the consensus protocol and the data

synchronization mechanism. This results in many point ad-

ditions on the curve. To reduce the performance overhead

when key aggregation involves many duplicates, we can use

this metadata to enable a better ordering of the operations.

For instance, the verification of 𝜎 (𝐴,𝐴,𝐴,𝐶,𝐶,𝐵,𝐵) would require
7
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key aggregation as 3𝑝𝑘𝐴 + 2𝑝𝑘𝐶 + 2𝑝𝑘𝐵 in the elliptic curve

notation. This requires less summations in the group than

𝑝𝑘𝐴 + 𝑝𝑘𝐴 + 𝑝𝑘𝐴 + 𝑝𝑘𝐶 + 𝑝𝑘𝐶 + 𝑝𝑘𝐵 + 𝑝𝑘𝐵 . The latter takes
more computation time.

4.3 Performance optimization tactics for browsers
This section contains four performance optimizations that

are important to be able to host this middleware inside web

browsers at scale.

Polyglot middleware using WebAssembly. WebAssem-

bly [72] is a binary instruction format that addresses the

problem of safe, fast, and portable low-level code on the

Web. Higher-level languages such as C, C++, and Rust can be

compiled to WebAssembly and can be executed in a modern

browser on any platform independent from the underlying

hardware. WebAssembly executes significantly faster than

JavaScript [34], however, it is not as fast as native code [37].

We used WebAssembly for two key components that are

computationally intensive. These components are the hash-

ing component to build the Merkle-tree and the BLS module

for aggregate signatures. They are implemented in the Rust

programming language [50] and are compiled to WebAssem-

bly to run inside a browser. Besides the performance im-

provement of WebAssembly over JavaScript, using Rust also

enabled us to make use of well-tested Rust libraries instead

of implementing these components ourselves in JavaScript.

ParallellizationusingWebWorkers. WebWorkers [35]

are separate browser threads, which enable us to run com-

putations off the main thread to keep the User Interface

responsive. The middleware is distributed over four different

threads. The Public interface and P2P Network component

run on the main thread together with the application. Public
interface helps set up the other threads and pass the API-calls
to the Consensus component. P2P Network is also located on

the main thread because WebRTC is not available inside Web

Workers. The other three components: Consensus, Member-
ship and Store, are each located in a separate Web Worker.

This enables long-running computations, for example BLS-

signature verification, to run in a separate thread without

blocking concurrent operations in the other threads.

Caching. Caching is used in several places for perfor-

mance reasons. The most important place is in the Member-
ship component in WebAssembly. While WebAssembly itself

is fast, the boundary between JavaScript and WebAssembly

is not. Function calls between the two environments can only

use numbers directly. Any other data structure has to be se-

rialized to bytes and be allocated a spot in the WebAssembly

memory buffer. In WebAssembly, these bytes can be decoded

to the appropriate Rust data structure. For this reason, all

cryptographic material such as public keys and the private

key are passed to WebAssembly at initialization, avoiding

this costly transfer for subsequent operations. In the Con-
sensus component, all CRDT and Merkle-tree structures are

cached in memory so a costly fetch from disk and decoding

from bytes can be avoided.

Batching of writes for IndexedDB. The last important

optimization concerns IndexedDB [1]. IndexedDB is an in-

browser database for structured data supporting fast reads

and lookups by using indexes. We found that when too many

write requests are sent to IndexedDB, latency significantly

starts to increase up to one second or even more. When one

atomic register is updated, also all intermediate nodes until

the root node of the Merkle-tree are updated. This is due to

the tree-shaped structure of the Merkle-tree. So, one write

somewhere down the tree, leads to a cascading of writes, and

every write causes the root node to be written as well. To

reduce the high latency, we batched all writes to IndexedDB

in-memory in the Store component. If multiple writes for

the same key happen in the same batch, only the last one

is actually executed. On fixed intervals of five seconds, the

whole batch is written to IndexedDB. Since many duplicate

writes are now avoided, the number of writes is reduced

significantly. This solved the problem of high read latency.

As not everything is immediately written to disk, fail-

ure can happen and lead to data loss. For updates received

through the peer-to-peer network, this is no problem as those

updates can be synchronized again later since the Merkle-

tree will detect the missing updates. Local update operations

by the user on this replica, are immediately written to disk

and bypass the write-batching to avoid data loss.

5 Evaluation
We validated the WebLedger middleware with the loyalty

points use case. The first section presents this validation.

Next, we presents three different benchmarks with different

scales. The first benchmark shows the performance results in

the optimal scenario where no replicas are acting Byzantine.

The second benchmark evaluates the performance in the

worst case, with the maximum number of Byzantine replicas

the middleware can tolerate. The last benchmark measures

a detailed performance breakdown to show the bottlenecks

in the current architecture and explain the results obtained

in the previous benchmarks.

5.1 Validation in the loyalty points use case
The deployment consists of three services: a web application

running in a browser for each merchant, a web server to

serve the static web application files, and a signaling server

to set up WebRTC peer-to-peer connections between the

browsers. The web server is optional. Every merchant can

also store those files themselves and load them from their

local file system. The signaling server is a trusted compo-

nent, however, if trust is not present, you can setup multiple

signaling servers to reduce potential misbehavior.

8
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Table 1. 99th percentile latency in seconds when all replicas

are honest.

1 tx/s 2 tx/s 3 tx/s

Replicas ECDSA BLS ECDSA BLS ECDSA BLS

20 1.09 1.20 1.20 1.37 1.33 1.49

40 1.33 1.43 1.88 1.56 3.11 1.69

60 1.83 1.51 3.21 1.68 8.25 1.86

80 2.74 1.71 6.87 1.89 - 2.06

100 3.63 1.99 11.17 2.20 - 2.28

If we compare this lightweight setup with the infrastruc-

ture requirements for Hyperledger Fabric, we assess that

WebLedger needs two central components and one browser

per merchant. Hyperledger Fabric needs at least one peer

server, one REST server, one certificate authority and two

CouchDB servers per merchant. Merchants at small stores or

farmers’ markets will prefer to use a simple browser-based

web application with a minimal back-end infrastructure.

Test setup. To test the performance of themiddleware, we

implemented the use case and deployed it on the Azure public

cloud. We used 21 VMs (Azure F8s v2 with 8 vCPUs and 16

GB of RAM) with one VM acting as a central server running

the web server and signaling server. The other VMs are

running several Chrome browsers inside a Docker container.

Each of those VMs holds one to five browser instances for

different scales of the benchmarks. To simulate a truly mobile

environment, the network is delayed to an average latency of

60 milliseconds using the Linux tc tool [2], which simulates

the latency of a 4G network [65]. To make sure the test

results are reliable, every test is executed 10 times.

We implemented two versions of the middleware with

different signature schemes. One with classical ECDSA sig-

natures which are aggregated in a set. The other with BLS sig-

natures which supports signature aggregation as explained

in Section 4.2.

We are interested in the time it takes to confirm a transac-

tion, experienced by the browser that submitted the trans-

action. Each transaction is a group of loyalty points being

changed from owner. For example a merchant giving some

loyalty points to a customer or a customer redeeming their

loyalty points with a merchant. We compare the latency, net-

work bandwidth, and disk usage for both implementations

with ECDSA and BLS, with a different number of browsers

and transaction throughputs. We show the 99th percentile la-

tency as all users should experience fast confirmation times,

and not only the average user [24].

5.2 Optimal scenario
In the optimal scenario, every replica is honest. This means

that the optimistic fast path can be used and consensus can

be reached without costly verifications after every message.

Table 2. 99th percentile latency in seconds for the worst-

case Byzantine scenario. Results for tests that cannot reach

the stated throughput are not shown.

1 tx/s 2 tx/s 3 tx/s

Replicas ECDSA BLS ECDSA BLS ECDSA BLS

20 1.63 2.12 2.07 2.84 5.65 4.90

40 3.15 2.94 12.31 4.55 - -

60 6.80 4.16 - 13.42 - -

80 13.13 4.57 - - - -

Instead, the aggregate signature is verified only at the end.

As every replica is honest, this aggregate signature is correct

and the new value can be accepted by all replicas.

Figure 5a-c shows the 99th percentile latency for different

number of browsers and different transaction throughputs.

Table 1 shows the detailed numbers. For the use case of

loyalty points, transactions must be confirmed fast, as people

are waiting at checkout to receive or redeem loyalty points.

The BLS implementation can confirm transactions within

2.5 seconds for all three throughputs, even with a network

of hundred browsers. The ECDSA implementation performs

well with 1 tx/s, but with increasing throughput, it eventually

starts to fail. It cannot achieve 3 tx/s in a network with 80

replicas. BLS only needs a single aggregate signature, while

ECDSA needs to keep a set with 100 signatures in the largest

network we tested.

This effect can be clearly seen in Figure 6a-c. BLS uses

always less bandwidth compared to ECDSA. In the large scale

scenario with 100 browsers and 2 tx/s, BLS uses three times

less bandwidth compared to ECDSA (437 vs 1356 kbit/s). This

bandwidth is acceptable for a typical mobile network.

Figure 7 shows the disk usage. BLS improves the disk usage

7 times for the scenario with 100 browsers and 2 tx/s. Both

implementations need less than 6 MB to store 1000 tokens.

This disk usage does not increase over time, as only the

current value and the proposals for the next value are stored.

We do not store a chain of all transactions that happened so

far. This is a big difference with blockchains that grow in

size with every transaction that is executed. This makes our

approach feasible for resource-constrained devices that do

not have hundreds of gigabytes storage capacity to store a

full blockchain.

5.3 Worst case scenario
The same benchmark from the previous section is repeated

with ⌊ 1
3
× (𝑛 − 1)⌋ replicas that are acting Byzantine. This is

the maximum number of Byzantine replicas that WebLedger

can tolerate. In every optimistic round, the Byzantine replicas

make the aggregate signature invalid by flipping some bytes.

As the signature is only verified when a supermajority is

reached, the honest replicas only realize this at the end, and

they cannot find out which replicas are Byzantine. The work
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Figure 5. 99th percentile latency for different number of browsers and throughputs. The first three situations are the best case

scenarios without Byzantine replicas. The last three are the worst case scenarios, containing ⌊ 1
3
× (𝑛 − 1)⌋ replicas, of the 𝑛

total replicas, that are acting Byzantine. Tests where the stated throughput cannot be reached are hidden.

500

1000

0

1500

Bandwidth [kbit/s]

40 60 8020 100

# browsers

(a) 1 tx/s

500

1000

0

1500

40 60 8020 100

# browsers

(b) 2 tx/s

500

1000

0

1500

40 60 8020 100

# browsers

(c) 3 tx/s

500

1000

0

1500

Bandwidth [kbit/s]

40 60 8020 100

# browsers

(d) 1 tx/s, Byzantine

500

1000

0

1500

40 60 8020 100

# browsers

(e) 2 tx/s, Byzantine

500

1000

0

1500

40 60 8020 100

# browsers

ECDSA

BLS

(f) 3 tx/s, Byzantine

Figure 6. Network usage for different number of browsers and throughputs. The first three situations are the best case

scenarios without Byzantine replicas. The last three are the worst case scenarios, containing ⌊ 1
3
× (𝑛 − 1)⌋ replicas, of the 𝑛

total replicas, that are acting Byzantine. Tests where the stated throughput cannot be reached are hidden.
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Figure 7. Average disk usage for different number of

browsers and throughputs.

done in the first round is therefore always lost in this scenario.

For the other rounds, the signatures are verified for every

message, so malicious replicas can be detected and excluded

from the network. In these rounds, the Byzantine replicas

keep the signature intact to avoid being detected. If they

would be detected, they would immediately be excluded

from the network with no effect on the remaining part of

the network. However, they try to slow down the consensus

by not voting themselves.

Figure 5d-f shows the latency in this worst-case scenario.

Table 2 shows the detailed numbers. We can again see that

BLS performs better, except for the smallest scale scenarios.

A throughput of 3 tx/s can only be reached with 20 repli-

cas. Since each transaction needs at least two rounds before

consensus is reached, the network usage is also increased

(Figure 6d-f). We did not show the disk usage for this experi-

ment as it is almost the same as in the optimal case, already

shown in Figure 7. Once a transaction is confirmed the stor-

age space for it is exactly the same, no matter how many

rounds were needed to achieve consensus.

With 1 tx/s, the BLS implementation of WebLedger can

confirm transactions within 5 seconds, even with 80 replicas

in the network. This is still fast enough for our use case of loy-

alty points. Even with many malicious parties, transactions

are confirmed steadily without annoying the customer.

5.4 Breakdown of performance results
To explain the results obtained in the previous two bench-

marks, we performed another benchmark doing only one

or two updates and measuring the time a replica spends

on average on each operation. Figure 8 shows this perfor-

mance breakdown over the 6 most important operations. The

network row contains the overhead of sending a message

through WebRTC to a different browser and receiving this

message. Most of this time is spent inside the internals of

the browser itself, rather than in the code of the middleware.

This time does not include the latency of the connection. The

merge row contains the time spent merging the state of a
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network 0.10 0.140.34 0.33 0.15 0.220.45 0.57 0.20 1.121.50 3.63 1.04 3.354.24 8.77

merge 0.11 0.210.14 0.24 0.74 1.471.65 3.73 0.05 0.070.10 0.13 0.11 0.140.23 0.30

sign 0.02 0.070.02 0.07 0.03 0.100.04 0.15 0.00 0.000.00 0.00 0.00 0.000.00 0.00

verify 0.02 0.060.02 0.07 0.28 0.760.45 1.58 0.01 0.020.01 0.04 0.02 0.060.06 0.16

aggregate 0.00 0.000.00 0.00 0.00 0.010.01 0.02 0.00 0.000.00 0.00 0.00 0.010.00 0.01

hash 0.00 0.000.01 0.01 0.01 0.010.03 0.04 0.00 0.000.01 0.01 0.01 0.010.02 0.03
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Figure 8. Total wall-clock time in seconds spend on a single replica on average, including I/O, for 1 or 2 transactions starting

at the same time. Network excludes network latency. Merge includes all of sign, verify, aggregate and hash.

remote replica with the local state, it includes maintaining

the Merkle-tree, the merge operation from Figure 1, as well

as the cryptographic operations: sign, verify, aggregate and

hash. The sign, verify, aggregate and hash row contains ex-

actly what their names say. The aggregate row for the ECDSA

implementation only takes the union of two sets with signa-

tures, there is no actual cryptography involved. The numbers

do not add up to the results shown previously as some op-

erations are executed in parallel in a different WebWorker

thread. The times shown are wall-clock times, so also the

time spent waiting on a different thread is included.

We can see that the performance characteristics of the two

implementations are different. The classical implementation

using ECDSA is severely limited by the overhead of WebRTC

and processing those messages, rather than the core crypto-

graphy. The BLS implementation on the other hand is limited

by the computational overhead of BLS. The network over-

head takes some time, but as the messages are only a fraction

of the size of those from ECDSA, this overhead is a lot less.

For example with 80 different replicas, an aggregate signa-

ture in BLS only takes up the size of one single signature

and some metadata of a few hundred bytes. An aggregate

signature in ECDSA consists of 80 different signatures, so

it takes up as much size as 80 signatures. The aggregation

step in BLS is quite fast. However, the verification step takes

more time. This is partly because BLS in general is slower

than ECDSA, but also because the WebAssembly implemen-

tation is slower than a real native environment. The ECDSA

implementation uses the built-in WebCrypto [81] libraries

which use the native functions provided by Chrome.

5.5 Conclusion
We have shown that WebLedger can be used for our loyalty

points use case with up to 80 different merchants, even when

some of them are acting maliciously. WebLedger can confirm

transactions fast, in the order of seconds, without needing

a complex back-end setup or wasting a lot of energy. Web-

Ledger has a small storage footprint due to its state-based

nature. The current limitation of WebLedger (with BLS) is

the verification phase that needs to be performed for every

new aggregated signature that is received. When the default

operation assumes that there are no malicious replicas being

present, WebLedger can scale to even more replicas, since

the fast path without intermediate verifications can be used.

6 Related work
Several client-side frameworks for data synchronization be-

tween web applications exist: Legion [79], Yjs [61, 62], and

Automerge [41]. They make use of various kinds of Conflict-

free Replicated Data Types (CRDT) [74] to deal with con-

current conflicting operations, and can synchronize data

peer-to-peer. They are easy to set up and only require a

browser and a small peer-to-peer discovery service. How-

ever, they assume trusted operation as the default setting.

None of them can tolerate malicious parties.

Open or permissionless blockchains such as Bitcoin [59]

and Ethereum [22, 82] allow everyone to participate and use

Proof-of-Work (PoW) to reach agreement over the ledger [33].

However, PoW has several flaws [13]. They use a lot of pro-

cessing power and energy [64] and perform poorly in terms

of latency. They assume a synchronous network to guar-

antee safety. When this assumption is violated, temporary

forks can happen in the blockchain as liveness is chosen over

safety. Therefore PoW blockchains do not offer consensus

finality, instead one needs to wait for several consecutive

blocks to be probabilistically certain that a transaction can-

not be reverted. Blockchains require a lot of storage space,

as the full blockchain typically needs to be stored on every

node. The Bitcoin blockchain for example has a total size of

278 GB in May 2020. Simplified Payment Verification (SPV)

mode [59] for clients can reduce the resource usage, at the

cost of decentralization. PoW gains its security from the fact

that one needs a lot of CPU power to control the network,

which is too costly for an attacker compared to the revenue

for a successful attack. Other variants of resource consump-

tion exist such as Proof-of-Space [4] or Proof-of-Storage [5].
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ByzCoin [43] uses PoW for a separate identity chain to

guard against Sybil attacks but uses a BFT protocol to ac-

tually order transactions. ByzCoin makes use of collective

signatures (CoSi) [77] and a balanced tree for the commu-

nication flow. CoSi makes use of aggregate signatures by

constructing a Schnorr multisignature [73]. However, CoSi

needs multiple communication round-trips through the peer-

to-peer network to generate the multi-signature and assumes

a synchronous network.

Tendermint [20, 21], used in the Cosmos blockchain, uses

Proof-of-Stake (PoS), where voting power is based on the

amount of cryptocurrency owned by each replica. Tender-

mint, like WebLedger, only relies on synchrony for termi-

nation and not for safety. Because block times are short, in

the order of seconds, there is a limited number of validators

Tendermint can have because finality needs to be reached for

each block. It is also not resistant to cartel forming, which

allows those with a lot of cryptocurrency to work together

to control the network.

Instead of reaching consensus between all the replicas of

the network, Stellar Consensus Protocol [48, 51] uses quorum

slices to reach federated Byzantine agreement in an open

network. Replicas should choose adequate quorum slices for

safety. However, today’s Stellar network is highly centralized

and many replicas use the same few validators. Two failing

validators can make the entire system fail [58].

Other protocols use a randomized approach. Ouroboros [40],

HoneyBadger [57] and BEAT [25] use distributed coin flip-

ping for the consensus. HoneyBadger [57] also uses threshold

signatures [75] for censorship resilience. Algorand [31] uses

Verifiable Random Functions [55] to select a random commit-

tee to participate in the next consensus round. Avalanche [70,

71] uses meta-stability to probabilistically reach consensus

by sampling other replicas without any leader.

Permissioned blockchains such as Hyperledger Fabric [3]

have closed membership and often use a BFT consensus

protocol to order transactions. For example BFT-SMART in

HyperLedger Fabric [15, 76].

The most well-known BFT protocol is probably Practical

Byzantine Fault-Tolerance (PBFT) [23]. Other protocols bring

improvements to the original PBFT. Zyzzyva [44] uses spec-

ulative execution which improves latency and throughput if

there are no Byzantine replicas. However, its performance

drops significantly if this premise does not hold. 700BFT [6]

provides an abstraction for these BFT algorithms. These pro-

tocols are targeting a small number of replicas deployed on a

local area network. They generally work in two phases: the

first phase guarantees proposal uniqueness, and the second

phase guarantees that a new leader can convince replicas to

vote for a safe proposal. HotStuff [83] proposed a three-phase

protocol to reduce complexity and simplify leader replace-

ment. This makes HotStuff much more scalable. All of these

algorithms use a leader to drive the protocol.When the leader

is malicious, performance can degrade quickly [7]. GeoBFT

is a topology-aware and decentralized consensus protocol,

designed for scalability in a geo-distributed setting [32].

Another approach is to use a trusted hardware compo-

nent [11, 39, 47, 80, 84]. These approaches are faster and less

computationally intensive but require specialized hardware

to be present. Moreover, trusted execution environments

have been broken in the past [42, 46, 78].

There are several proposals to improve the performance

and response time of Hyperledger Fabric. StreamChain [36]

reaches consensus over a stream of transactions instead

of blocks. FabricCRDT [60] uses CRDTs to support con-

current transactions to occur in the same block, using the

built-in conflict resolution of CRDTs to resolve the conflict

automatically. Other approaches also borrow from CRDTs:

PnyxDB [19] supports commuting transactions to be applied

out-of-order. A novel design for gossip in Fabric [12] im-

proves the block propagation latency and bandwidth. While

these improvements make Hyperledger Fabric faster, none

of them try to reduce the infrastructure requirements to be

able to easily set up an untrusted peer-to-peer network.

The Bitcoin Lightning Network [67] or state channels for

Ethereum [53, 56, 66] are off-chain protocols that run on

top of a blockchain. A new state channel between known

participants is created by interacting with the blockchain.

After its creation, participants can use this channel to col-

lectively execute state transitions by collectively signing the

new state. These transactions on the state channel do not

involve the blockchain and have fast confirmation times and

no transaction costs. However, state channels assume all

participants to be always online and honest. If this assump-

tion is violated, the underlying blockchain needs to be used

to resolve the conflict. Another solution for offline partici-

pants can be the use of a trusted third party [52]. WebLedger

uses a similar state-transitioning protocol where only the

latest collectively agreed state needs to be stored. However,

WebLedger can tolerate both crashed and malicious replicas,

without resorting to a blockchain or a trusted third party.

7 Conclusion
In this paper, we presented WebLedger. A browser-based

middleware for decentralized, community-driven, web appli-

cations. WebLedger uses an optimistic, leaderless consensus

protocol, tolerating Byzantine replicas. This consensus pro-

tocol is combined with a robust and efficient state-based

synchronization protocol based on state-based CRDTs and

Merkle-trees. WebLedger uses an optimized BLS scheme

for efficient computation and storage of signatures. This

middleware makes client-side, Byzantine fault-tolerant con-

sensus feasible in small-scale, citizen-driven, networks. No

large back-end infrastructure is required, and transactions

are confirmed within seconds. In contrast with traditional

blockchains, WebLedger does not store a transaction log or

blockchain, keeping the overall storage footprint small.
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