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Abstract—Part of the web is shifting to a client-centric, decen-
tralized model where web clients become the leading execution
environment for application logic and data storage. However,
current solutions to build decentralized web applications with
multiple distrusting parties often involve a decentralized backend
of servers running a BFT protocol between them. In this paper,
we present RoBFT, a purely browser-based platform for decen-
tralized BFT consensus in client-centric, community-driven web
applications. We propose a novel, optimistic, leaderless consensus
protocol, tolerating Byzantine replicas, combined with a robust
and efficient state-based synchronization protocol. This protocol
makes RoBFT well suited for the decentralized client-centric web
and its dynamic nature with many network disruptions or node
failures. Using a state-based protocol, no transaction log is stored,
keeping the storage footprint small for client-centric devices.

I. INTRODUCTION

Browsers and client-side web technologies offer increasing
capabilities to enable fully client-side web applications that
can operate independently and in a stand-alone fashion, in
contrast to the server-centric model [1], [2]. Mobile apps
are also more and more purely web-based clients, where the
execution environment is just a browser-based container for a
mobile web app. Web 3.0 can be defined as the decentralized
web where users are in control of their data, and that re-
places centralized intermediaries with decentralized networks
and platforms. Community-driven, decentralized networks can
open the road to many use cases for the sharing economy [3]
or shared loyalty programs for local communities [4]. Such
client-centric collaborations can, for example, enable a small
network of merchants in a local shopping street, or at a
farmer’s market to set up a shared loyalty program between
the merchants in an ad-hoc fashion. These small-scale, special-
ized collaborative networks can empower motivated citizens
to bring value to their local community, without involving
an incumbent big-tech company that can change the rules
unilateral at any moment.

However, current state-of-the-art peer-to-peer data synchro-
nization frameworks for the browser such as Legion [5],
Automerge [6], and OWebSync [7] focus on full replication
and eventual consistency between trusted clients. Each replica
can modify all data, and all modifications are automatically
replicated to all replicas. These protocols lack Byzantine Fault
Tolerance (BFT). Yet, they are easy to set up and trusted
parties can quickly use these to synchronize and modify a
shared data set between them.

Decentralized interactions between distrusting parties can
be enabled by using a classical BFT consensus protocol such
as PBFT [8], BFT-SMaRt [9], Tendermint [10], Algorand [11],

Ouroboros [12], or HotStuff [13]. These classical BFT proto-
cols are very fast and have a high throughput, but typically
assume server-to-server communication with low-latency net-
work connections, and assume every node is connected to
all other nodes. Nakamoto consensus [14], used in several
blockchains such as Bitcoin and Ethereum [15], relaxes this
requirement and only requires a loosely coupled network.
However, blockchains based on Nakamoto consensus are too
slow for many use cases. They need minutes, or even an
hour, to confirm a transaction with high probability. Moreover,
they consume a large amount of energy and need a lot of
processing power. At last, Avalanche consensus [16] tries to
solve the scalability problem by using the concept of meta-
stability. Only a small subset of replicas need to be sampled
to reach consensus. However, you still need a connection to
every other replica, as the replicas that you need to sample
change continuously.

Ultimately, a decentralized mobile web application should
be able to run in a robust and resilient way over a network
of online client devices such as smartphones. Such devices
have a permanent yet unstable internet connection over a
data subscription, and are operational and reactive most of
the time. However, the existing BFT consensus protocols are
designed for more server-like infrastructure that has lots of
processing power, storage space, and a stable, low-latency
network connection. The motivated citizens in our envisioned
use cases do not have this kind of knowledge, budget, and
infrastructure available to set up a private network of servers
running a BFT protocol between them. They rather want to use
their existing hardware such as a low-end computer, or even a
mobile device. They could use a public blockchain network,
at the cost of paying a fee for every transaction, which lowers
the economic viability of this approach. A private network
between the citizens without fees is more suitable. This also
has the advantage that not all data is publicly readable by the
whole world.

In this paper, we present RoBFT: Robust BFT, a novel peer-
to-peer data synchronization framework for decentralized web
applications between mistrusting parties. RoBFT combines
the efficient operation and lightweight setup of a peer-to-
peer data synchronization framework with the resilience and
fault tolerance of a BFT consensus protocol. The novel BFT
protocol, optimized for unstable network conditions, does not
require that all replicas are connected to each other. It also
does not rely on a leader, removing the need for a costly
leader-election procedure when this leader is malicious or
loses its network connection temporary. The latter scenario is
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common in our target environment. Each browser replica only
maintains the current authenticated state, and does not need to
keep track of an operation log or transaction history, keeping
the storage footprint small. To further reduce the storage
and bandwidth requirements, we use an aggregate signature
scheme called BLS [17]. This also reduces the computational
requirements when all replicas are honest, as only a single
aggregate signature has to be verified. The authenticated state
and consensus votes are replicated over multiple hops using a
gossip protocol.

To summarize, RoBFT combines the following contribu-
tions in a browser-based middleware:

1) Lightweight, leaderless, client-centric Byzantine fault tol-
erant consensus.

2) Resilient and robust, state-based synchronization of both
the data and the votes for the consensus protocol using
state-based CRDTs and Merkle-trees.

3) Compact storage of signatures using the BLS signature
scheme, with delayed verification and aggregation.

Our evaluation, using our application use case of a shared
loyalty program between small-scale merchants, shows that
RoBFT is a practical solution for these kinds of community-
driven use cases. RoBFT achieves transaction finality in the
order of seconds, even in networks with 100 browser clients,
or in unstable network conditions.

This paper is structured as follows. Section II presents a mo-
tivational use case. Section III presents RoBFT’s lightweight
BFT consensus protocol and the state-based replication strat-
egy. The detailed web-based middleware architecture of
RoBFT is elaborated in Section IV. Our evaluation in Sec-
tion V focuses on many aspects of performance in both the op-
timistic scenario as well as more realistic and even Byzantine
scenarios. Section VI elaborates on important related work.
We conclude in Section VII.

II. MOTIVATION

We describe an initial use case that would benefit from
the lightweight, robust consensus offered by RoBFT. The use
case involves business transactions happening in real life and
needs interactive performance and robustness, rather than high
throughput or scalability. We then formulate our vision on
decentralized web applications.

Loyalty programs. Integrated loyalty programs can be more
effective than traditional loyalty programs that are limited
to a single company [18]. Think about airlines that award
miles which can be redeemed with several partners. Such
collaborations usually introduce an extra trusted intermediary
and add more layers of management and operational logistics.
This trusted party can charge high transaction costs to be part
of the integrated network. For small merchants on a farmer’s
market or in a local shopping street, this operational overhead
is too much of a burden. A decentralized peer-to-peer network
can enable fast and secure creation, redemption, and exchange
of loyalty points across different merchants.

Vision. We envision that communities will be able to use
RoBFT as a platform to explore new applications and use

cases that were previously not feasible. While our initial proof-
of-concept implementation is targeting the browser, the tech-
niques explained in this paper can be easily ported towards na-
tive mobile and lightweight desktop applications. RoBFT does
not need any complex infrastructure, and it currently provides
a simple JavaScript-based API, which allows many developers
to start developing decentralized applications. Those decentral-
ized applications can be made open source, which allows many
people to verify and vouch for them. Local communities who
want to set up a decentralized application between the local
participants, can use such an application and do not need to
concern themselves with a complex infrastructure setup to run
the application. Nor do they need to rely on a third party
general purpose public blockchain network.

III. ROBFT PROTOCOL

This section explains the state-based consensus protocol
used in RoBFT. First, it describes the adversary model and
its properties. Then it explains the protocol specification.

A. System model

We assume a partially synchronous network [19]. Messages
can be delayed, dropped or delivered out of order. An ad-
versary might corrupt up to f replicas of the n ≥ 3f + 1
total replicas. They can deviate from the protocol in any
arbitrary way. Such replicas are called Byzantine, while the
replicas that are strictly following the protocol are called
honest. We assume attackers are computationally bounded and
it is infeasible to forge the used asymmetric signatures or find
collisions for the used cryptographic hash functions.

We address in this paper a replicated key-value store for
which replicas coordinate agreement using a Byzantine Fault
Tolerant consensus protocol, such that the following classical
properties hold [20]:

• Termination: Every correct replica eventually decides
some value.

• Validity: If all replicas are correct and propose the same
value v, then no correct replica decides a value different
from v; furthermore, if all replicas are correct and some
replica decides v, then v was proposed by some replica.

• Agreement: No two correct replicas decide differently.
• Integrity: No correct replica decides twice.

All writes to a key-value pair are atomic, meaning that
only a single state transition can happen at any time. Extra
application-level conditions can be applied to limit who can
write to it, and which values are acceptable given the previous
value. RoBFT does not use a leader to coordinate the protocol,
removing a common single-point-of-failure compared to many
existing BFT protocols. In such leader-based protocols, the
failure of a leader leads to a long delay before consensus
can be reached. The set of replicas is fixed, and changes to
the replica set have to be made outside the protocol, e.g., by
halting the protocol, updating the set of replicas on all replicas,
and start the protocol again. Consensus is reached for each
key-value pair separately, which means that each key has its
own instance of the RoBFT protocol.
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Fig. 1. State transition diagram of the RoBFT consensus protocol.

B. Protocol specification.

The specification of the protocol is shown in Algorithm 1.
The state of a replica consists of three parts. The first part is the
current value and a quorum certificate. The quorum certificate
contains signatures of a supermajority of n− f replicas, and
proves the validity of the value. The second part is a map,
which maps rounds to a collection of votes for the next value.
In each round, there can be multiple proposed values. The third
part consists of a new proposed value and a partial quorum
certificate for that value. This state is shown at the first 5 lines
of Algorithm 1.

Consensus is reached in two steps, first a supermajority
needs to be reached in the last round of the votes, then
a supermajority needs to be reached for the next quorum
certificate. The first step will establish a resilient quorum,
while the second step will guarantee that sufficiently many
replicas know that such a quorum has been achieved. The
flow of the protocol is shown in Fig. 1.

1) Proposing new values: To write a new value, a replica
has to propose a new value to the other replicas. This process
is the PREPARE phase in Algorithm 1. The proposing replica
adds the new value and its vote to round 0 of votes. As the
protocol is leaderless, any replica can be a proposing replica
and multiple replicas can propose a new value simultaneously.
Replicas are only allowed to vote once in each round for each
view, so if the replica already voted for another value in that
round, it will have to wait until consensus is reached for the
current set of votes, and propose the new value in the next
view.

2) Consensus: Consensus about which value will be ac-
cepted in a view is reached in two phases, called PRE-COMMIT

and COMMIT in Algorithm 1. Honest replicas will always vote
for the value with the most votes in round 0. If a round has
reached a supermajority of votes for a single value, then no
new round can be started anymore, and the replicas will start
creating a new quorum certificate. If a supermajority of the
replicas have voted in a round, but not a single value reaches

Algorithm 1 Basic protocol.
1: value← ⊥ ▷ Current accepted value
2: qc← ⊥ ▷ Quorum certificate for value
3: for v ← 1, 2, 3, ... do ▷ view
4: votes← ∅ ▷ round 7→ votesInRound
5: qc′ ← ∅ ▷ Next quorum certificate

▷ PREPARE phase
6: as a proposing replica:
7: wait for value value′ from client
8: votes[0]← {VOTE(v, 0, value′, PRE-COMMIT)}
9: as a non-proposing replica:

10: wait for any value in votes

11: for r ← 0, 1, 2, 3, ... do ▷ round
▷ PRE-COMMIT phase

12: if ¬HASVOTED(votes[r]) then
13: value′ ← WINNINGVALUE(votes[0])
14: vote← VOTE(v, r, value′, PRE-COMMIT)
15: votes[r]← votes[r] ∪ {vote}
16: wait for (n− f ) votes in votes[r]
17: value′ ← WINNINGVALUE(votes[r])
18: valV otes← VOTESFORVALUE(votes[r], value′)
19: if LEN(valV otes) ≥ (n− f) then
20: vote← VOTE(v, r, value′, COMMIT)
21: qc′ ← qc′ ∪ {vote}
22: else
23: value′ ← WINNINGVALUE(votes[0])
24: vote← VOTE(v, r + 1, value′, PRE-COMMIT)
25: votes[r + 1]← {vote}
26: continue

▷ COMMIT phase
27: wait for (n− f ) votes in qc′:
28: if LEN(votes)− 1 > r then
29: qc′ ← ∅
30: continue
31: value← VALUE(qc′)
32: qc← qc′

a supermajority, a new round is started and all replicas can
vote again in this new round. The replicas are only allowed to
vote on the current winner in round 0 according to their local
state. Because each replica might have a different state on
the current set of votes in round 0, there can still be multiple
values in the next round without any supermajority for a single
value.

Another factor is Byzantine nodes trying to halt the system
by voting not according to the rules. However, the set of
possible values to vote on gets smaller with every round, and
eventually the view of all the honest replicas on the votes in
round 0 will become the same, and the winning value can be
chosen unanimously. The reason for this is that a replica does
not simply send a message with his vote to the others, but
instead gossips the entire state. This includes all votes for the
previous rounds. This means that when two replicas disagree
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∅, ∅

SET(v)

Fig. 2. Example of the state-based synchronization with 4 replicas A,B,C,D. Only the current votes and qc′ are shown. Arrows represent a state transfer.

with each other in a certain round, once they communicate
with each other, they will learn each other’s state. In the next
round they will both vote for the same value (as their local
state of votes[0] will be the same). Malicious replicas can try
to shift the balance to violate liveness, but with each round
they have less possibility to do so. Because when they gossip
votes[i] they also gossip the previous rounds which should
show why they voted on a certain value. If a replica detects
that another replica is Byzantine, it will exclude this Byzantine
replica permanently, and its votes do not count anymore.

3) Correctness: The integrity and validity properties are
trivially satisfied. We can now reformulate the agreement and
termination properties more precisely as a safety and liveness
property.

Let R be a cluster of n replicas with f Byzantine replicas
and n ≥ 3f + 1. RoBFT’s correctness is defined by the
following two properties:

• Safety: If replicas R1, R2 ∈ R are able to construct
quorum certificates qc1 for value value1 and qc2 for value
value2 at view v, then value1 = value2.

• Liveness: If an honest replica R ∈ R proposes a new
value value1 at view v, eventually a replica will be able
to construct a quorum certificate qc for some value at
view v.

We proof that RoBFT satisfies these properties in Appendix A.
4) State-based replication protocol: The full state is repli-

cated by using a state-based gossip protocol. A major fea-
ture of gossip-based communication is its reliability [21].
Each time a new state is received, the local state is
merged with the remote state. This protocol synchronizes data
peer-to-peer using state-based Conflict-free Replicated Data
Types (CRDTs) [22] combined with a Merkle-tree [23] to
efficiently replicate the updated state, similar to Merkle Search
Trees [24] or OWebSync [7]. The state of the protocol in
Algorithm 1 can be represented as a CRDT: votes and qc′

are Grow-only Sets [22], and a state associated with a higher
view number overwrites any older state, much similar to a
LWWRegister [22]. There are extra constraints imposed on the
CRDTs due to the Byzantine nature: not all states are valid,
and signatures have to be correct. When a replica receives
an invalid state, it will be ignored. The Merkle tree is used
to efficiently replicate the state between any two replicas. If
the state of two replicas is the same, only the root hash is
sent and compared, which limits the network usage. If the
states differ, the protocol descends in the tree looking for

mismatching hashes to find out which key-value pairs must
be synchronized. By using a state-based approach, rather than
the operation-based approach of operation-based CRDTs [22],
blockchains [14], or traditional BFT protocols, we only need
to store the current state together with some metadata. There is
no need to store the full log of all operations to later convince
replicas that were temporarily offline of the new state. Replicas
also do not need to keep track of the state of other replicas,
or which messages are already received by which replica. If
a new value and quorum certificate with a higher view are
received, then the protocol will accept the new state, and the
protocol will reset back to line 3 of Algorithm 1 with that
newer view. Note that we do not explicitly show the gossiping
in Algorithm 1 to keep the algorithm compact. During all
phases in the algorithm, the state is continuously replicated
to the other replicas. The state-based replication also helps
with the consensus protocol. Instead of only sending proposals
and decisions to other replicas, the full state of votes and
qc′ is sent. This approach allows replicas to hold each other
accountable when they cast their vote. Their votes should
support why they voted for a specific value, otherwise they
will be considered Byzantine and excluded from the network.

5) Example: An example of this replication process is
shown in Fig. 2. There are four non-Byzantine replicas with
an empty set of votes and empty qc′ at t0. The scenario
starts at t1 with replica A proposing a new value v (line 7-8
of Algorithm 1). The state is replicated to the other replicas
randomly. In the example, the state is gossiped to replica B
and C at t2, and those replicas merge the received state with
their local state. Since B and C did not yet vote in this view
and round, they will cast their vote for the current winning
value (line 10-15 of Algorithm 1). This process continues at
t3 when replica B sends its state to replica A and C. At t3,
replica C observes that a supermajority of the replicas support
value v, and it starts working on a new quorum certificate to
determine if at least a supermajority of the replicas also knows
about this (line 17-21 of Algorithm 1).

6) Delaying signature verification: For brevity, we did not
show the actual verification of signatures in Algorithm 1.
However, in the basic protocol, each time a new signature is
received, it needs to be verified. This can become quite costly,
and therefore RoBFT will use a fast path and delay the ver-
ification of any incoming signatures. RoBFT will just accept
and replicate them, until a decision needs to be made, such
as starting a new round or starting to create a new proposed
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Fig. 3. Browser-based architecture of RoBFT.

quorum certificate. Only then, all signatures will be verified in
one batch. If all signatures are valid, the protocol can continue
as normal. If there are invalid signatures, then those will be
removed and RoBFT will continue to collect more signatures
and verify them on arrival. This hybrid approach enables very
fast consensus when all replicas are honest, while gracefully
degrading to a slower, more costly protocol that can detect
which replicas are actively acting Byzantine.

IV. ARCHITECTURE AND IMPLEMENTATION

This section describes the client-centric architecture, de-
ployment, and implementation of RoBFT. This middleware
architecture is key to support the BFT consensus and synchro-
nization protocol described in the previous section. RoBFT
is fully web-based and written in JavaScript and can execute
in any recent browser without any plugins. This section first
describes the overall architecture. Then it explains our use of
aggregate signatures using BLS to reduce the size of the data.

A. Overall architecture

The RoBFT middleware architecture consists of five main
components (Fig. 3): (i) a public interface that offers an
API for developers, (ii) a peer-to-peer network component to
communicate directly with other browsers, (iii) a consensus
component to handle the consensus protocol described in the
previous section, (iv) a membership component to handle all
cryptographic operations, and (v) a store component to save
all state to persistent storage. The last three components run
on a different browser thread by using Web Workers.

(i) Public interface. This component provides an API to
application developers to use this middleware. It provides
four functions to modify the application state: GET(key)
returns the current value at the given key, SET(key,
value) submits a proposal to update the value at the given
key, DELETE(key) deletes the value at the given key. A
tombstone is kept for correct replication, LISTEN(key,
callback) supports reactive programming by calling the
callback with the new value each time a new value for the
key is confirmed by the network.

Apart from those functions, the middleware also provides a
constructor function to initialize the middleware by passing
the following four configuration parameters: the list of all
members of the network together with their public key, the
private key of the replica, the URL to the signaling server
to set up the peer-to-peer connections, and an access-control

callback to verify state changes. This access control callback
is called before voting for a new proposed value, with both the
old and new values as arguments. It should return a boolean

whether to allow this change or not. This callback enables the
implementation of basic access control policies on the values.
One example is to embed the public key of the owner into the
value and requiring each new value to be signed by the owner.
This value can only be changed by the owner, and supports
passing ownership by changing the embedded public key.

(ii) Peer-to-peer network. The P2P Network component
manages the peer-to-peer network and is responsible for the
replication of the state-based CRDTs. Many browser-based
replicas are connected to each other using WebRTC (Web
Real-Time Communications). WebRTC enables a browser to
communicate peer-to-peer. However, to set up those peer-
to-peer connections, WebRTC needs a signaling server to
exchange several control messages. Once the connection is
set up, all communication can happen peer-to-peer, without a
central server. Another WebRTC peer-connection can also be
used as a signaling layer, so once a replica is connected to
another one, it can also connect to all of its peers, without the
need of a central signaling server. In our adversary model, this
server is assumed to be trusted. If this signaling server would
be malicious, the safety of the system is not endangered as
no actual data is sent to this central server. However, some
peers might not be able to join the network and the required
supermajority might not be reached, which violates liveness.
The use of multiple independent signaling servers can lower
the risk of this happening. To defend against an eclipse attack,
where few Byzantine neighbors try to surround an honest
replica to break liveness, a replica can periodically create new
connections to other peers and drop older connections when
no updates are being gossiped to them, or when proposals are
not being voted on.

(iii) Consensus. The Consensus component handles the
consensus protocol described in Section III. It maintains a
Merkle-tree of all key-value pairs and uses the state-based
CRDT framework OWebSync [7] to replicate the local state
to other replicas using the P2P Network component. The
Merkle-tree is constructed using the Blake3 cryptographic
hash function. For performance reasons, the hash function is
implemented in Rust and compiled to WebAssembly.

(iv) Membership. The Membership component contains all
cryptographic material and is responsible for all cryptographic
operations such as signing and verification of signatures.
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G0 and G1 are two multiplicitive cyclic groups of prime order
q. H0 : {0, 1}∗ → G0 and H1 : {0, 1}∗ → Zq are hash
functions viewed as random oracles.
1) Parameters Generation: PGen(κ) sets up a bilinear group

(q,G0,G1,Gt, e, g0, g1) as described by [25]. e is an
efficient non-degenerating bilinear map e : G0×G1 → Gt.
g0 and g1 are generators of the groups G0 and G1. It
outputs params← (q,G0,G1,Gt, e, g0, g1).

2) Key Generation: KGen(params) is a probabilistic algo-
rithm that take as input the security params, generates
sk

$←− Zq , computes and sets pk ← gsk1 , and outputs
(sk, pk).

3) Signing: Sign(sk,m) is a deterministic algorithm that takes
as input a secret key sk and a message m. It computes
t← H1(pk), and outputs σ ← H0(m)sk·t ∈ G0.

4) Key Aggregation: KAgg({(pki, ri)}ni=1) is a deterministic
algorithm that takes as input a set of public key pk and the
multiplicity r pairs. It computes ti ← H1(pki), and outputs
apk ←

∏n
i=1 pk

ti·ri
i .

5) (Multi-)Signature Aggregation: Agg(σ1, ..., σn) is a de-
terministic algorithm that takes as input n signatures. It
outputs σ ←

∏n
i=1 σi.

6) Verification: Ver(apk,m, σ) is a deterministic algorithm
that takes as input aggregated public keys apk ∈ G1, and
the related message m and signature σ ∈ G0. It outputs
e(g1, σ)

?
= e(apk,H0(m)).

Fig. 4. Formal specification of the BLS signature scheme.

We use an aggregate signature scheme called BLS [17].
Section IV-B provides more details about the BLS implemen-
tation. It is implemented in C and compiled to WebAssembly.

(v) Store. At last, the Store component saves all state to
the IndexedDB database. IndexedDB is a key-value datastore
built inside the browser. Each value and the Merkle-tree
are serialized to bytes and stored there under the respective
key. This enables users to close the browser and continue
afterwards without losing the current state.

B. Aggregate signatures using BLS

The consensus protocol in Section III is resource-intensive
with respect to aggregation and verification of digital signa-
tures. Signatures must be continuously collected and verified.
This means, in every intermediate state of a transaction, each
party needs to keep track of all incoming signatures and verify
them to prevent malicious scenarios. Persistence, management,
and transmission of these signatures are costly, especially
in a browser-based setting. Therefore, our protocol requires
short and compact signatures to reduce storage and network
footprint. Boneh–Lynn–Shacham (BLS) [17] presented a sig-
nature scheme based on bilinear pairing on elliptic curves.
The size of a signature produced by BLS is compact since
a signature is an element of an elliptic curve group. The
aggregation algorithm [26] outputs a single aggregate signature
as short and compact as the individual signatures, unlike other

approaches that rely on ECDSA, DSA or Schnorr. Other state-
of-the-art BFT systems such as SBFT [27] and HotStuff [13]
also use aggregate or threshold signatures. However, they use
it in a different way. They let the leader compute the aggregate
signature. RoBFT uses a different approach, once a proposed
quorum certificate has reached a supermajority of the votes,
any replica can aggregate these into one single aggregated BLS
signature. RoBFT makes a trade-off between performance,
bandwidth and storage space. Verifying a single signature
is expensive, however, aggregation is cheap in performance.
For this reason, RoBFT will delay the verification of the
signatures until the latest possible moment (as explained
in Section III-B6). Only then the individual signatures are
aggregated and verified. If the verification fails, a binary search
can be conducted to find the invalid signatures and remove
them. This leads to a higher bandwidth usage, compared to
always aggregating two shares immediately. But allows for
cheaper recovery when a Byzantine replica is sending invalid
signatures. Once a signature is aggregated and verified, the
individual shares are discarded, saving both bandwidth and
storage space.

The standard scheme is vulnerable to rogue public key
attacks. The state-of-the-art approach [25] to mitigate such
attacks is to compute (t1, ..., tn)← H1(pk1, ..., pkn) for each
Agg invocation and compute σ ←

∏n
i=1 σ

ti
i , where pki is the

public key of replica i, H1 is a hash function, and σi is a
signature produced by replica i. Although the ti values can be
cached, the computation of σ would be costly. Moreover, Agg
does not take as input the same set of public keys at different
states of a transaction in our consensus protocol. Therefore,
we distribute the computations by moving the calculations
of the ti and σti

i values to the signing parties, and as a
result, these computations are performed only once. Now, any
replica can run Agg by only computing σ1...σn. The security
properties of BLS remain intact [25], and we obtain more
efficient aggregations at scale. We provide the mathematical
background and formal specification of the optimized BLS
scheme in Fig. 4.

V. EVALUATION

We validated the RoBFT middleware with the loyalty points
use case presented in Section II. The first subsection presents
this validation. Next, we present three different benchmarks
with different scales. The first benchmark shows the per-
formance results in the optimistic scenario without network
failures or Byzantine failures. The second benchmark evaluates
the performance in a more realistic scenario with some net-
work failures. The last benchmark evaluates the performance
in the presence of a Byzantine replica.

A. Validation in the loyalty points use case

Integrated loyalty programs can be more effective than tra-
ditional loyalty programs that are limited to a single company.
Think about airlines that award miles which can be redeemed
with several partners. Such collaborations usually introduce an
extra trusted intermediary and add more layers of management
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and operational logistics. This trusted party can charge high
transaction costs to be part of the integrated network. For
small merchants on a farmer’s market or in a local shopping
street, this operational overhead is too much of a burden. A
decentralized peer-to-peer network can enable fast and secure
creation, redemption, and exchange of loyalty points across
different merchants.

The deployment of the loyalty points use case consists of
three services: a web application running in a browser for each
merchant, a web server to serve the static web application
files, and a signaling server to set up WebRTC peer-to-
peer connections between the browsers. The web server is
optional. Every merchant can also store those application files
themselves and load them from their local file system. The
signaling server is a trusted component. However, if trust
is not present, you can set up multiple signaling servers to
reduce potential misbehavior. No actual data is sent to the
signaling server. It is only used to discover other peers on
the network. To have a baseline, we compare RoBFT to
two other existing state-of-the-art systems for BFT consensus:
BFT-SMaRt [9], [28] and Tendermint [10], [29]. BFT-SMaRt
is a more traditional BFT protocol, similar to PBFT [30],
where all replicas are connected to each other, and one leader
drives the protocol. If that leader fails, a new one will have to
be elected before any progress can be made. Tendermint uses
gossip for communication between the replicas. There is still
a leader, however, that leader changes frequently.

B. Test setup.

To test the performance of RoBFT, we implemented the use
case and deployed it on the Azure public cloud. We used 21
VMs (Azure F8s v2 with 8 vCPUs and 16 GB of RAM) with
one VM acting as a central server running the web server and
signaling server. The other VMs are running Chrome browsers
inside a Docker container. Each of those VMs holds one to five
browser instances for different scales of the benchmarks. To
simulate a truly mobile environment, the network is delayed
to an average latency of 60 milliseconds using the Linux tc
tool, which simulates the latency of a 4G network. Every test
is executed 10 times to ensure the results are reliable.

We are interested in the time it takes to confirm a transac-
tion, experienced by the browser that submitted the transaction.
Each transaction is a group of loyalty points being changed
from owner. For example, a merchant gives some loyalty
points to a customer or a customer redeems their loyalty
points with a merchant. In the evaluation, the browser clients
will do one transaction per second. This throughput is more
than enough for the local community-scale use cases we
envision. We compare the latency and network bandwidth with
a different number of browsers. We show a boxplot of the
latency results instead of only the average, as all users should
experience fast confirmation times, and not only the average
user.

RoBFT Tendermint BFT-SMaRt

1

2

3
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4
Latency [s]

20 40 60 80 100
# replicas

Fig. 5. Latency in the optimistic scenario without failures.

RoBFT Tendermint BFT-SMaRt

1

2

0

3
Bandwidth [Mbit/s]

20 40 60 80 100
# replicas

Fig. 6. Network usage in the optimistic scenario without failures.

C. Optimistic scenario

In the optimistic scenario, every replica is honest and no
replicas fail, so the fast path can be used. One single aggregate
signature is verified only before a decision, avoiding costly
signature verifications after every message. As every replica
is honest, this aggregate signature is correct and the new value
can be accepted by all replicas.

Fig. 5 shows the latency for the different technologies. For
the use case of loyalty points, transactions must be confirmed
fast, as people are waiting at checkout to receive or redeem
loyalty points. RoBFT can confirm transactions within 4
seconds, even with a network of one hundred browsers. BFT-
SMaRt can confirm transactions within half a second. This
is because all replicas communicate directly with each other.
However, having all replicas directly connected to each other
is not realistic in a mobile peer-to-peer network. In contrast,
RoBFT and Tendermint use gossip and need multiple hops
before all replicas are reached. This also causes the increased
latency. Furthermore, BFT-SMaRt uses HMAC to authenticate
requests, which are an order of magnitude faster than the
asymmetric signatures used in RoBFT and Tendermint. We can
see a similar pattern in the bandwidth requirements shown in
Fig. 6. In the large-scale scenario with 100 browsers, RoBFT
uses less than 3 Mbit/s, which is acceptable for a typical
mobile network.

D. Realistic scenario

The same benchmark is now repeated with 25% of the
replicas failing during the benchmark. A failure is simulated by
dropping all network packets to and from that replica. Replicas
fail one by one, with a 5-second delay between each failure.
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Fig. 7. Latency in the realistic scenario with network failures.
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Fig. 8. Comparison of the latency in the normal scenario with one where a
Byzantine replica tries to halt the network.

As all systems are Byzantine fault tolerant, they should be
able to tolerate up to 33% of the replicas failing or acting
Byzantine.

Fig. 7 shows the latency in this scenario. RoBFT is not
impacted much by the failing replicas and can still confirm
transactions within 5 seconds. The impact on Tendermint is
also small, but the latency is doubled to about 10 seconds.
BFT-SMaRt however needs to use a costly leader election
protocol when the current leader fails. This process takes
some time, during which no transaction can be committed.
Once a leader is chosen, the same fast performance can be
achieved again. This behavior is clearly visible in Fig. 7.
The median latency of BFT-SMaRt is not affected by the
failures. However, the tail latency increases to 27 seconds for
the scenario with 80 replicas. It cannot handle the case with
100 replicas. BFT-SMaRt is unable to handle large network
sizes when the latency between the nodes is higher than usual,
e.g., in geo-distributed systems or on mobile networks. This
has been shown in the literature before [24]. Tendermint does
have a leader, but it is rotated round-robin all the time. This
makes the failure of a leader less severe, as a new one will
quickly be elected anyway.

E. Byzantine scenario

For RoBFT, we performed an extra benchmark with Byzan-
tine replicas. As long as the honest replicas are still using the
fast path, the Byzantine replicas will send extra invalid signa-
tures. As the signatures are only verified when a supermajority
is reached, the honest replicas only realize this at the end,
and they cannot find out which replicas are Byzantine. Once
the fast path is disabled, the signatures are verified for every

message, so malicious replicas can be detected and excluded
from the network. In this case, the Byzantine replicas keep the
signature intact to avoid being detected. However, they will try
to slow down the consensus by not voting themselves.

The latency in this Byzantine scenario is shown in Fig. 8.
RoBFT can handle Byzantine replicas very well for smaller
networks, however, for networks of size 100 replicas, the tail
latency becomes 7 seconds. Which might already be quite high
for the use case of loyalty points. We did not test the effect
of Byzantine replicas for BFT-SMaRt or Tendermint. As they
do not use a fast path when everyone is honest, the impact
is less. However, if the current elected leader happens to be
Byzantine, it can delay the consensus until some timers end
and a new leader is elected [31].

F. Discussion and conclusions

We have shown that RoBFT can be used for the loyalty
points use case with up to 100 different merchants, even when
some of them are acting maliciously. RoBFT can achieve
similar latencies as other gossip-based BFT protocols, such
as Tendermint. Our evaluation also shows the trade-offs that
RoBFT makes. In an optimal scenario where there is a good
connection available between all replicas and no network
disruptions or crashes happen, then a classical leader-based
protocol such as BFT-SMaRt will outperform RoBFT. How-
ever, as we mention in the introduction, we envision a more ad-
hoc network between low-end devices on a residential or even
a mobile network, where short-term disruptions are common.
Our evaluation shows that RoBFT is very robust against this
kind of setting and achieves similar performance as in the
optimal scenario: a transaction is always finalized within 5
seconds. A leader-based protocol such as BFT-SMaRt is not
well suited. The temporary failure of a leader leads to long
commit times, and even total failure for larger network sizes.
This leader also needs more resources and a direct connection
to every other replica. Keeping 100 WebRTC connections open
in a browser, while theoretically possible, drastically reduces
performance. However, RoBFT does not impose this, since
consensus can be reached gradually over time, as the full state
of the proposals and votes propagates through the network.
RoBFT can confirm transactions fast, in the order of seconds,
without needing a complex back-end setup or wasting a lot of
energy. RoBFT has a small storage footprint due to its state-
based nature.

VI. RELATED WORK

Several client-side frameworks for data synchronization
between web applications exist: Legion [5], Automerge [6],
and OWebSync [7]. They make use of various kinds of
Conflict-free Replicated Data Types (CRDTs) [22] to deal
with concurrent conflicting operations, and can synchronize
data peer-to-peer. They are easy to set up and only require a
browser and a peer-to-peer discovery service. However, they
assume trusted operation as the default setting. Some work has
been done in a semi-trusted setting [32], [33]. None of them
can tolerate Byzantine parties.
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WebBFT [34] shares a similar vision of client-centric,
decentralized web applications. However, they only interface
to a backend BFT-SMaRt cluster, instead of running the BFT
protocol directly between browsers.

Open or permissionless blockchains such as Bitcoin [14]
and Ethereum allow everyone to participate and use Proof-
of-Work (PoW) to reach agreement over the ledger. However,
PoW has several flaws [35]. PoW uses a lot of processing
power and energy [36] and performs poorly in terms of latency.
It assumes a synchronous network to guarantee safety. When
this assumption is violated, temporary forks can happen in the
blockchain as liveness is chosen over safety. Therefore, PoW
blockchains do not offer consensus finality, instead one needs
to wait for several consecutive blocks to be probabilistically
certain that a transaction cannot be reverted. Simplified Pay-
ment Verification (SPV) mode [14] for clients can reduce the
resource usage at the cost of decentralization.

ByzCoin [37] uses PoW for a separate identity chain
to guard against Sybil attacks but uses a BFT protocol to
order transactions. ByzCoin makes use of collective signa-
tures (CoSi) [38] and a balanced tree for the communication
flow. CoSi makes use of aggregate signatures by construct-
ing a Schnorr multisignature. However, CoSi needs multiple
communication round-trips to generate the multi-signature and
assumes a synchronous network.

Tendermint [10], [29], used in Cosmos, uses Proof-of-
Stake (PoS), where voting power is based on the amount of
cryptocurrency owned by each replica. Because block times
are short, in the order of seconds, there is a limited number
of validators Tendermint can have because finality needs to
be reached for each block. It is also not resistant to cartel
forming, which allows those with a lot of cryptocurrencies to
work together to control the network.

Other protocols use a randomized approach.
Ouroboros [12], HoneyBadger [39], Dumbo [40] and
BEAT [41] use distributed coin flipping for consensus.
HoneyBadger [39] uses threshold encryption [30] for
censorship resilience. Algorand [11] uses Verifiable Random
Functions [42] to select a random committee for the next
round. Avalanche [16], [43] uses meta-stability to reach
consensus by sampling other replicas without any leader.
While Avalanche is lightweight and scalable, it needs to be
able to sample all other validators directly. The number of
connections one can open in a browser without performance
loss is limited. RoBFT supports propagation of votes over
multiple hops.

Permissioned blockchains such as Hyperledger Fabric [44]
have closed membership and often use a BFT consensus
protocol to order transactions. For example BFT-SMART in
HyperLedger Fabric [9], [28]. The first known BFT protocol
is Practical Byzantine Fault Tolerance (PBFT) [8]. Other
protocols bring improvements to the original PBFT protocol.
Zyzzyva [45] uses speculative execution which improves la-
tency and throughput if there are no Byzantine replicas. How-
ever, its performance drops significantly if this premise does
not hold. 700BFT [46] provides an abstraction for these BFT

algorithms. These protocols are targeting a small number of
replicas in a local network. They generally work in two phases:
the first guarantees proposal uniqueness, and the second guar-
antees that a new leader can convince replicas to vote for a
safe proposal. HotStuff [13] proposed a three-phase protocol
to reduce complexity and simplify leader replacement. This
makes HotStuff more scalable. All these algorithms use a
leader to drive the protocol. When the leader is malicious,
the performance can degrade quickly [31]. GeoBFT [47] is
a topology-aware, decentralized consensus protocol, designed
for geo-distributed scalability. RoBFT does not use a leader
and replicas communicate only to a subset of the other replicas
using a gossip-like protocol. Another approach is to use a
trusted hardware component [48]–[52]. These are faster and
less computationally intensive but require specialized hardware
to be present. Moreover, trusted execution environments have
been broken in the past [53], [54].

AWARE [55] is a variant of BFT-SMaRt that dynamically
changes the voting power of a replica depending on its latency
over time, decreasing the consensus latency. RoBFT gives
every replica equal voting power. In future work, RoBFT
could be extended to associate a weight to each vote. While
we believe this would be especially beneficial for our target
environment with mobile and unreliable clients, special care
will have to be given to ensure safety will stay intact.

There are several proposals to improve the performance
and response time of BFT. StreamChain [56] reaches con-
sensus over a stream of transactions instead of blocks. Fabric-
CRDT [57] uses CRDTs to support concurrent transactions to
occur in the same block, using the built-in conflict resolution of
CRDTs to resolve the conflict automatically. Other approaches
also borrow from CRDTs: PnyxDB [24] supports commuting
transactions to be applied out-of-order. A novel design for gos-
sip in Fabric [58] improves the block propagation latency and
bandwidth. Other approaches dynamically adapt the number
of faults the system can withstand in reaction to threat level
changes [59]. While these improvements make BFT faster,
none of them try to reduce the infrastructure requirements to
be able to easily set up an untrusted peer-to-peer network.

The Lightning Network or state channels for Bitcoin [60] or
Ethereum [61], [62] are off-chain protocols that run on top of a
blockchain. A new state channel between known participants is
created by interacting with the blockchain. After its creation,
participants can use this channel to execute state transitions
by collectively signing the new state. These transactions do
not involve the blockchain and have fast confirmation times
and no transaction costs. However, state channels assume all
participants to be always online and honest. If this is violated,
the underlying blockchain needs to be used to resolve the
conflict, or a trusted third party can be used [63]. RoBFT uses
a similar state-transitioning protocol where only the latest col-
lectively agreed state needs to be stored. However, RoBFT can
tolerate both failing and malicious replicas, without resorting
to a blockchain or a trusted third party.
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VII. CONCLUSION

In this paper, we presented RoBFT. A browser-based mid-
dleware for decentralized, community-driven web applications.
RoBFT uses a client-centric, leaderless BFT consensus proto-
col, combined with a robust and efficient state-based synchro-
nization protocol. RoBFT uses an optimized BLS scheme for
efficient computation and storage of signatures. It supports a
client-centric, browser-based, state-based, permissioned datas-
tore with a low infrastructure and storage footprint for small-
scale, citizen-driven networks. RoBFT offers consistent and
robust confirmation times to achieve finality of transactions in
the order of seconds, even in failure settings and Byzantine
environments. In contrast to traditional blockchains, RoBFT
does not store a transaction log or blockchain, keeping the
overall storage footprint small.
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sank my battleship! a case study to evaluate state channels as a scaling
solution for cryptocurrencies,” in FC, 2020.

[63] P. McCorry, S. Bakshi, I. Bentov, S. Meiklejohn, and A. Miller, “Pisa:
Arbitration outsourcing for state channels,” in AFT, 2019.

APPENDIX A
SAFETY AND LIVENESS

This section sketches the proof that the algorithm provides
safety and liveness. The protocol described before guarantees
both safety and liveness when there are at least 2f +1 honest
replicas available.

A. Safety

Lemma 1 (Safety): Let R be a cluster of n replicas with f
Byzantine nodes and with n > 3f . If replicas R1, R2 ∈ R are
able to construct quorum certificates qc1 for value value1 and
qc2 for value value2 at view v, then value1 = value2.

We will first prove this for the simplified case when both
quorum certificates belong to the same round, and we will
then prove that once a quorum certificate can be constructed,
no more rounds can be started.

Lemma 2: If replicas R1, R2 ∈ R are able to construct
quorum certificates qc1 and qc2 for value value1 and value2
respectively with qc1 view = qc2 view and qc1 round =
qc2 round, then value1 = value2.

Proof: Assume two different replicas R1 and R2 have
constructed a quorum certificate qc1 and qc2 for value value1
and value2 respectively with qc1 view = qc2 view and
qc1 round = qc2 round. They are constructed in the same
round, so of the n possible votes, at least n− f replicas have
voted on value1, and at least n − f replicas have voted on
value2. Honest replicas will never vote twice in the same view
and round. Therefore, at least n−2f honest replicas have voted
on value1 and n− 2f different honest replicas have voted on
value2. In total, we have (n− 2f)+ (n− 2f)+ f ≡ 2n− 3f
replicas that have voted. We defined n ≥ 3f + 1 before,
which gives 2n − 3f ≥ 3f + 2 ≥ n + 1 replicas. This is

a contradiction, there need to be at least n + 1 replicas to
construct two such certificates for different values, however,
we only have n replicas. So the two values value1 and value2
have to be equal.

Lemma 3: If replicas R1, R2 ∈ R are able to construct
quorum certificates qc1 and qc2 for value value1 and value2
respectively with qc1 view = qc2 view, then qc1 round =
qc2 round.

Proof: Assume two different replicas R1 and R2 have
constructed a quorum certificate qc1 and qc2 for value value1
and value2 respectively with qc1 view = qc2 view and
qc1 round < qc2 round. Since qc1 is accepted, at least n − f
replicas vote on the proposed quorum certificate and at least
n − f replicas voted on value1 in round qc1 round. The fact
that n − f replicas voted on the proposed quorum certificate
means that at least n − 2f honest replicas observed n − f
votes for value1. Of those votes, at least n− 2f are coming
from honest replicas. The only way to now construct a quorum
certificate qc2 for value2 is to start a new round. To start a
new round, a replica needs to not have voted for the proposed
quorum certificate qc1, and observe a different winning value
value2. Yet, at least n − 2f honest replicas observed that at
least n− 2f honest replicas think that value1 is the winning
value. This leaves only 2f replicas who can prefer another
value value2. By definition we have n ≥ 3f +1. This means
that in the worst case, f+1 honest replicas observe f+1 honest
replicas thinking value1 is the winning value, together with
f Byzantine replicas. Value value2 has only 2f supporting
replicas, which is not enough to start a proposed quorum
certificate. So, at least one replica currently supporting value1
needs to switch votes in a future round. However, once a
replica has voted for a proposed quorum certificate, it will not
change their opinion unless it is convinced that a new valid
round is started. So once n − 2f honest replicas are locked
on a value, by voting on a proposed quorum certificate, it is
impossible that a valid new round can be started.

B. Liveness

When a new value is proposed, eventually the protocol
will end and a valid quorum certificate is created for a new
value. This value is not necessarily the first proposed value,
and it is not even guaranteed that a specific value ever gets
committed as long as other values continue to be proposed.
Safety is always chosen over liveness. When there are not
enough honest replicas online to reach a supermajority, no
consensus can be reached and the protocol will simply block
and wait for more votes. However, all those replicas do not
need to be online at the same time, since the state is replicated
to all available replicas over time, and votes can be verified
by all replicas in the end.

Lemma 4 (Liveness): Let R be a cluster of n replicas with f
Byzantine nodes and with n > 3f . If an honest replica R ∈ R
proposes a new value at view v, eventually a replica will be
able to construct a quorum certificate qc for some value at
view v.
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Lemma 5: If only a single replica R ∈ R proposes a new
value value1, eventually a replica will be able to construct a
valid quorum certificate qc.

Proof: As there is only a single proposed value, all honest
replicas who observe this will cast their vote for that value.
Eventually, one replica will observe n − f votes for value1
and a new proposed quorum certificate qc′ will be constructed.
Eventually, n− f votes will be cast to this proposed quorum
certificate qc′ and a valid quorum certificate qc is constructed
and value is committed.

Lemma 6: If x replicas R1..x ∈ R propose values value1..x,
and no Byzantine replicas vote twice in the same round,
eventually a replica will be able to construct a valid quorum
certificate qc.

Proof: Either a single value reaches a quorum, in which
case the previous lemma holds. Or a split vote occurs and a
new round will be started after n− f votes are observed. All
replicas will base their vote for this new round on the winning
value that they observed from round 0. At least n − f votes
are known, and only f votes are still unknown. As long as not
all votes are known to all voting replicas, the winning value
might change. In each new round, either an unknown vote
stays unknown, or it becomes known. In the former case, then
the currently known votes will all be the same, and a proposed
quorum certificate can be started. In the latter case, one extra
vote is known, which might again result in the system ending
up in a split vote, and a new round will be started. However,
this last case can only happen at most f times. After f +
1 rounds, all replicas will have voted in round 0, and every
replica will observe the same winning value, and a quorum
certificate can be created.

Lemma 7: If x replicas R1..x ∈ R propose values value1..x,
eventually a replica will be able to construct a valid quorum
certificate qc.

Proof: If no Byzantine replicas vote twice in the same
round, or only a single value is proposed, the previous two
lemmas hold. If a split vote occurs, a new round will be started
after n−f votes are observed. f of those votes might belong to
Byzantine replicas who can vote for multiple values. As a new
round is only started after n− f votes, a least n− 2f honest
votes are observed. No Byzantine replica can send conflicting
votes to any of those n − 2f honest replicas, as otherwise
those replicas will detect this conflicting vote and exclude
the Byzantine replica. If this happens repeatedly, at most f
times, all Byzantine replicas are excluded and the previous
lemma holds. Moreover, no Byzantine replica can continue to
vote on values that are not the winning value. Each replica is
only allowed to vote on the winning value or any other value
that has at least support from f + 1 replicas in the previous
round. All honest replicas converge to a single value, even
with Byzantine replicas supporting other values. Because the
protocol only looks to round 0 to determine the winning value.
In the rounds after that, the f Byzantine replicas can support
a different value, but if they do, they will be excluded as
f < f + 1. This means that after at most 2f + 1 rounds,
a proposed quorum certificate can be started, which will be

committed.
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