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Abstract

Distributed systems are currently evolving from a centralized client-server
architecture to decentralized, web-based architectures. Decentralized systems
use replication techniques that decentralize control, but have several challenges
such as resilience, interactivity, and storage overhead. In this dissertation, we
address client-centric replication for the web in three distinct environments
characterized by varying trust and consistency requirements: strong eventual
consistency in a trusted setting, strong consistency in a Byzantine setting, and
strong eventual consistency in a Byzantine setting. Each of these scenarios
presents unique challenges and requirements that need to be addressed. For
the first environment, strong eventual consistency in a trusted setting, we
present a Conflict-free Replicated Data Type protocol that is fully state-based, yet
supports fine-grained delta-merging without keeping track of individual clients.
Secondly, for strong consistency in an untrusted environment, we propose a
Byzantine Fault Tolerant consensus protocol with a novel way to synchronize
consensus votes between the replicas, making the protocol fully leaderless. At
last, we present a Conflict-free Replicated Data Type protocol that supports
a Byzantine environment with strong eventual consistency, without the need
to keep track of individual transactions or clients. To evaluate the proposed
protocols’ effectiveness, we implemented them in three separate browser-based
middlewares and assessed their performance in realistic settings, including
failure scenarios. This research contributes to the advancement of replication
techniques in decentralized web architectures by providing robust solutions for
diverse trust and consistency requirements, ultimately enhancing the resilience,
interactivity, and storage efficiency of such systems.
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Beknopte samenvatting

Gedistribueerde systemen evolueren momenteel van een gecentraliseerde client-
server architectuur naar gedecentraliseerde, web-gebaseerde architecturen.
Deze gedecentraliseerde systemen gebruiken replicatietechnieken die controle
decentraliseren, maar hebben verschillende uitdagingen zoals robuustheid,
interactiviteit en opslag overhead. In dit proefschrift behandelen we client-
centrische replicatie voor het web in drie verschillende omgevingen die worden
gekenmerkt door variërende vertrouwens- en consistentievereisten: sterke
uiteindelijke consistentie in een vertrouwde omgeving, sterke consistentie
in een Byzantijnse omgeving, en sterke uiteindelijke consistentie in een
Byzantijnse omgeving. Elk van deze scenario’s presenteert unieke uitdagingen
en vereisten die moeten worden aangepakt. Voor de eerste omgeving, sterke
uiteindelijke consistentie in een vertrouwde omgeving, presenteren we een
Conflictvrij Gerepliceerd Datatype protocol dat volledig toestandsgebaseerd
is, maar toch fijnmazige delta-samenvoeging ondersteunt zonder individuele
clients bij te houden. Ten tweede, voor sterke consistentie in een onbetrouwbare
omgeving, stellen we een Byzantijns Fouttolerant consensusprotocol voor met een
nieuwe manier om consensusstemmen tussen de replica’s te synchroniseren,
waardoor het protocol volledig leiderloos wordt. Tot slot presenteren we
een Conflictvrij Gerepliceerd Datatype protocol dat een Byzantijnse omgeving
met sterke uiteindelijke consistentie ondersteunt, zonder de noodzaak om
individuele transacties of clients bij te houden. Om de effectiviteit van
de voorgestelde protocollen te evalueren, hebben we ze geïmplementeerd in
drie afzonderlijke middlewares voor de browser en hebben we hun prestaties
beoordeeld in realistische omstandigheden, inclusief faalscenario’s. Dit onderzoek
draagt bij aan de vooruitgang van replicatietechnieken in gedecentraliseerde
webarchitecturen door robuuste oplossingen te bieden voor uiteenlopende
vertrouwens- en consistentievereisten, waardoor uiteindelijk de robuustheid,
interactiviteit en opslagefficiëntie van dergelijke systemen wordt verbeterd.
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The computing landscape has changed dramatically over the last decades. It
started with a centralized model where all computations were done on a central
mainframe controlled by thin clients. All data is stored on the central mainframe,
and all connected clients have a user name and the central operating system
enforces access control based on user names. The clients themselves are mostly
just a screen, with minimal storage and computing capacity.

Later, these clients became more powerful and computation shifted to these client
devices. This initiated the era of personal computing, in which each user had
a personal computer. Most applications are running on that computing device,
and solely operate on local data. There is no active replication of the data. If
users want to exchange some data, they can use a physical device such as a floppy
disk or USB drive. With the widespread availability of the internet, exchanging
data via centralized servers using internet-based protocols such as FTP [PR85]
and HTTP [BFN96] became possible. In the early 2000s, it became possible
to exchange data via decentralized networks such as Napster, Gnutella, and
BitTorrent [Coh03]. This allowed client devices to exchange data in a peer-to-
peer fashion, i.e., directly between the client devices instead of via a central
server [Ora01; Lua+05]. However, the data remained static in nature, as it was
not possible to edit a document on one device and have the changes automatically
propagate to other devices.

CVS and SVN emerged as centralized version control systems, facilitating
collaboration and change tracking. Yet, they still relied on a central server,
which could become a single point of failure. Eventually, Git was developed as a
distributed version control system, enabling better collaboration and resilience by
allowing users to maintain a complete copy of the project on their local machines.
However, it has some shortcomings compared to real-time collaboration platforms,
particularly in terms of latency and handling simultaneous edits.

With the rise of cloud computing [Vaq+09; Buy+09] and Software-as-a-Service
offerings, the computations shifted back to central servers. Cloud computing is
beneficial for users in terms of availability, durability, security, and collaboration.
By having a centralized service in the cloud, which manages all data, users
can seamlessly collaborate on the same data. Clients need little storage and
computing capacity, as the data is stored on servers that can run complex queries
and computations. However, this dependence on a centralized service has some
shortcomings. If the internet connection is slow, client-side performance will
also deteriorate. Even worse, when no internet is available, the application and
the user’s data are not available at all. Furthermore, a lot of trust is given to
the service provider. If they do a bad job securing the data, the user’s data can
be hacked and stolen. Also, malicious employees can access the data and the
company can even decide to sell the data to third parties. Finally, the user has no
control over the data, as it is stored on the servers of the service provider which
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can decide to delete or modify the data at any time. Lots of data, and therefore
power, is given to a few large tech companies and governments, while end-users
are losing sovereignty over their own data [Ber17].

To potentially address these issues, data, and computation could be moved back to
client devices. However, near-real-time collaboration on the same data set should
still be supported. Therefore, the data should be replicated across multiple client
devices. This leads to the paradigm of client-centric replication [Dem+94]. Data
is replicated among numerous client devices and servers without designating a
single device as the authoritative copy. One of the major problems of replication
is keeping replicas consistent. When one copy is updated, the other copies should
be updated as well.

This dissertation focuses on addressing the challenges of client-centric replication
on the web, especially the problems of resilience and fault-tolerance, interactive
performance, and storage overhead.

This chapter first discusses the current state-of-the-art of client-centric replica-
tion, together with the major limitations and shortcomings. Secondly, the goal of
this dissertation is presented. In the later sections of this chapter, we describe our
approach and present the three major contributions of this work. This chapter
concludes with an overview of the structure of this dissertation.

1.1 Client-centric replication

An important aspect in the area of distributed systems is data replication.
Client-centric replication is an approach for managing data more efficiently,
improving performance, and enhancing reliability. However, the challenges posed
by mobile networks, such as latency, robustness, and bandwidth constraints, can
make implementing client-centric replication more difficult. These factors can
hinder the overall efficiency of client-centric systems, requiring the exploration
of different replication strategies that can effectively address the specific
requirements of mobile devices and their users.

Today, we are witnessing two different trends in the current approach to client-
centric replication. The first trend is the field of local-first software [Kle+19], a
paradigm in which updates are made directly on the local device and where the
data will be replicated later to other devices. The second trend is distributed
ledger technology, also known as blockchain [Nak08], in which all replicas keep
track of a ledger and make sure that all copies are consistent.

Both forms of client-centric replication move data from a centralized location in
the cloud to the client devices, allowing peer-to-peer communication. However,
they are very different in terms of consistency level, as local-first software is
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Eventual consistency

Strong consistency

Byzantine Trusted

Local-first

Blockchain

Figure 1.1: The two trends in client-centric replication situated across two
dimensions: level of trust and consistency requirements.

typically eventually consistent, while blockchain is strongly consistent. There
are also differences in trust models, as local-first software is typically used in a
trusted environment of honest replicas, while blockchain is used in a Byzantine
environment with potentially malicious replicas. These different dimensions of
the level of trust and consistency requirements for client-centric replication are
depicted in Figure 1.1.

Trend 1: Local-first software

Local-first software [Kle+19; JLJ19a; HK20; Haa22] is a paradigm in which
clients always make updates directly on their local devices. Later on, the updates
are synchronized with the cloud or other client devices. Because all updates are
done locally, the application is always available, even when there is no internet
connection. Generally, performance is better because local users do not experience
network latency. Furthermore, the user has full sovereignty over the data, as
it is stored locally. However, for developers, these kinds of applications with
eventually consistent data are harder to develop, as they need to deal with
synchronization and conflict resolution. Local-first software offers improved
data ownership by storing data on the local client device and enables real-time
collaboration. This is a major difference with file-based synchronization protocols
such as Dropbox, where files are also stored locally, but fine-grained real-time
collaboration is not possible. Solutions such as Google Docs do allow real-time
collaboration, but the data and coordination are done on a central server, and it
does not allow offline usage.

Kleppmann [Kle+19] proposed seven ideals for local-first software:
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1. The primary copy of the data is stored locally on the client device, this
makes local interactions with the application fast and responsive;

2. The data is replicated to the cloud or other client devices, this makes the
data available on other devices;

3. No network connection is required to make changes to the data;

4. Collaboration should be seamless, with no need for explicit coordination
between users;

5. If both the data and software are stored on client devices, it enables greater
longevity since there is no dependence anymore on the existence of the
central service provider that can decide to shut down their operations;

6. Security and privacy by design1, there is no need for a service provider to
have access to the actual data;

7. Users have full ownership and control over their data.

In essence, these ideals mean going back to the advantages of the early days of
personal computing, where each user had a personal computer with applications
that operate on data stored locally. However, the world has changed since then,
and users now have multiple devices on which they want to access their data. As
well as the fact that users want to collaborate on the same data set in real-time.

The web is a natural environment and eco-system for local-first software [JLJ19a].
The current state of browser technologies allows developers to create rich web
applications that can function across different operating systems as well as on
personal computers and mobile phones. Yet, the current paradigm of the web is
still server-centric. The key data is stored, served, processed, and analyzed on
central servers from the service provider.

Tim Berners-Lee, the founder of the web, has observed over the years that users
have lost control of their personal data [Ber17]. To regain control, Tim Berners-
Lee proposed that the web should evolve into a decentralized network, where
data can be stored under the control of the user. Therefore, browsers need to
shift from the client-server paradigm to a decentralized peer-to-peer approach.
However, a true peer-to-peer approach of end-user devices is not very durable
and available. Devices are often not online at the same time, do not have a large
amount of storage space, and can fail more easily or more frequently compared
to a server inside a data center. The Solid Platform [Man+16] proposes to use
a Personal Online Datastore (pod) that can either be self-hosted or hosted with
a third-party pod provider. This central pod, under the control of the user, can

1Assuming users are responsible to secure their own devices well.
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be used to store and collaborate on data from the user. However, as most users
will opt to use a cloud service to run their pod, many of the ideals of local-first
software will not be reached. Data is far away from the user, and not at all
available when offline. Security and privacy will depend on the trust in the pod
provider, instead of the service provider for classical cloud applications. This
can already be an improvement for smaller applications, but it also creates more
interesting targets for attackers.

Trend 2: Blockchain

Blockchain is a distributed ledger technology that is used to store and edit
data in a decentralized way. Nakamoto introduced the concept of blockchain in
2008 [Nak08] with the creation of Bitcoin. Bitcoin’s primary focus was to create
a decentralized digital currency that is not controlled by any central authority.
Instead, all replicas agree on the current state of who owns how many tokens.
Later, other blockchains were created, such as Ethereum [But+13], which support
generic computations on the data via so-called smart contracts. Similar to local-
first software, all replicas have a full copy of the data and can propose transactions
to modify the current state. Different from local-first software, blockchains do not
aim for eventual consistency but instead require strong consistency. Furthermore,
in general, other replicas are not trusted, and this strong consistency should hold,
even when other replicas are actively trying to break it. Such replicas are called
Byzantine replicas. These blockchains such as Bitcoin and Ethereum require
large amounts of processing power, have high transaction costs, and result in
long latency times before a transaction is executed and confirmed reliably.

Challenges and state-of-the-art

Client-centric replication trends are supported by two underlying technologies:
Conflict-free Replicated Data Types (CRDTs) and Byzantine Fault Tolerant (BFT)
consensus in blockchain. In this section, we will discuss these technologies and
their current limitations in the state-of-the-art.

Conflict-free Replicated Data Types

Conflict-free Replicated Data Types (CRDTs) emerged in 2011 [Sha+11b] and are
an essential technology to support local-first client-centric replication. CRDTs
are data structures that can be replicated across multiple devices, and that can
be merged together to automatically resolve conflicts. These data structures
guarantee Strong Eventual Consistency (SEC) without the need for explicit
coordination between replicas or rollbacks. An object is eventually consistent if it
has eventual delivery (an update delivered at some correct replica is eventually
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delivered to all correct replicas), convergence (correct replicas that have delivered
the same updates eventually reach equivalent state), and termination (all method
executions terminate). For strong eventual consistency, a stronger convergence
property is required: strong convergence (correct replicas that have delivered the
same updates have equivalent state) [Sha+11a].

There are different types of CRDTs: operation-based, state-based, and delta-
state-based. Operation-based CRDTs [Sha+11a] are the most commonly used
in local-first software [KB18; Nic+15]. They work by making sure that every
concurrent operation is commutative. This way, once all operations have reached
all clients, in whatever order, the data structure will be in the same state on
each client. However, to make sure that all these operations reach all clients,
a reliable message broadcast channel is required, which also often needs to
guarantee causally ordered delivery. One such way to do this is by using vector
clocks [Fid88; Mat88; BP16], which will grow in size with every new replica that
is modifying the data. In a dynamic environment such as the web, this vector
clock will quickly grow in size and deteriorate performance. Techniques exist to
reduce the communication overhead of large vectors [SK92] but typically require
extra bookkeeping and storage at each replica. Furthermore, the addition and
removal of clients, which happens often on the web, does not work well with a
fixed-size data structure. State-based CRDTs [Sha+11a] add extra metadata
on top of the actual data to be able to merge the data structures. Updates are
replicated by sending the entire state and merging the two versions together. For
this reason, state-based CRDTs are less suitable for client-centric replication, but
they are used today between servers. Yet, they have the advantage that they are
much more robust, impose little requirements on the message channel, and do not
need to track clients. The third type, delta-state-based CRDTs [ASB18; ASB15;
LLP16; Lin+17], are a combination of the previous two. They are essentially
state-based and can always fall back to sending the full state, but in practice,
they can calculate a small delta update that can be sent instead. However, often
this still requires client-specific metadata such as vector clocks and inherits the
same problem as operation-based CRDTs which grow in size with the number of
replicas over time.

Byzantine Fault Tolerant consensus

The problem of achieving strong consistency in a distributed system with
Byzantine replicas is called the Byzantine Generals Problem [LSP82] and was
described already in 1982 by Lamport et al. The Byzantine Generals Problem
is a fundamental issue in distributed systems that represents the challenge of
reaching consensus among multiple participants (generals) in the presence of
faulty or malicious actors (Byzantine actors). The problem arises when a group of
generals, each commanding their own army, must agree on a coordinated strategy
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(e.g., attack or retreat) to achieve a common goal, e.g., attacking a city. They can
send messengers back and forth between each other to communicate the time
of the attack, but this messenger has no other possibility than to go through
enemy territory. He is always at risk of getting caught, killed, or replaced by the
enemy, thus creating confusion and hindering consensus. If this happens, the
battle strategy is sabotaged and the attack will fail. Furthermore, some generals
might even be traitors who send conflicting information to other generals. The
objective is to design a system where honest generals can reach agreement
on a plan of action, even when faced with the presence of message loss and
Byzantine actors whose actions are unpredictable and may actively attempt to
undermine the consensus process. Castro and Liskov [CL99] proposed a practical
solution in 1999 called Practical Byzantine Fault Tolerance (PBFT). PBFT is
a leader-based consensus protocol typically used between a small number of
servers (< 10). Scaling to more replicas is hard, as the protocol relies both on
a leader, as well as on all-to-all communication between all replicas over a low-
latency network connection. The growing interest in blockchain has led to new
research in BFT consensus protocols, aiming for more scalability, throughput, and
resilience. Examples are BFT-SMART [BSA14] or HotStuff [Yin+19]. However,
these protocols still do not match the client-centric idea where replicas are client
devices and not servers. The network link between the replicas is a mobile or WiFi
connection, and clients do not always have enough resources to act as a leader for
the consensus protocol. Other BFT protocols, such as Tendermint [BKM18], relax
the network requirement by leveraging a multi-hop gossip [Dem+87] network
between the replicas. This greatly reduces the networking cost on a single replica,
as only a few network connections need to be maintained. However, this protocol
is still leader-based. In a normal, server-centric environment, the failure of a
leader is not very severe, as a new leader can be elected quickly. This is especially
the case for Tendermint, which will rotate the leader often as part of the normal
execution. Yet, in a client-centric environment, leader failures are much more
common, especially when the network is unreliable. Leaders that fail often,
and the remaining replicas taking some time to elect a new leader, will form a
performance bottleneck in the system. If leaders fail often, more time will be
spent on leader election than actually reaching consensus.

1.2 Research goals

This thesis investigates whether we can use this new paradigm of client-
centric replication for collaborative web applications. In such collaborative web
applications, multiple users, with multiple clients, are working concurrently on a
shared data set. Current local-first software faces metadata explosion challenges
when replicating and merging data peer-to-peer, while blockchain replicas these
days are run on large server devices because of both computational as well as
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storage requirements. Both solutions are not really suitable for client devices
with unstable network conditions today.

Interactive and resilient replication

Client-centric replication should provide both interactive and resilient replication.
Interactive replication means that the user should not notice any delay in the
replication process. This is crucial for collaborative applications, as users expect
immediate replication of changes. To quantify this noticeable delay, we look
into the research of Nielsen on usability engineering [Nie93]. Nielsen defines
a threshold of 100 milliseconds for the user to not notice any delay for local
interactions. This threshold is easily met by using a local-first approach, which
replicates the data to the client devices. As all data is locally stored, queries
can be performed very quickly. For remote interactions, users generally expect
it to take 1 to 2 seconds. They become annoyed after 5 seconds, and will often
leave the application after 10 seconds. These objectives are already more difficult,
especially if strong consistency is required, this will require global coordination
between all replicas, limiting the overall scalability. The systems’ scalability in
this dissertation is directly impacted by the 5-second upper bound before users
become annoyed. Furthermore, the aim is not to reach this goal for the average
user, instead, most users should experience this acceptable performance [DeC+07].
For this reason, we mostly look at the 99th percentile instead of the averages.

Only having interactive performance during normal operation without failures
is not enough. As we focus on client-centric replication, the network is not
very reliable, and short-term interruptions will often happen. The replication
protocol should, therefore, also be resilient. By resilient we mean that interactive
performance will be restored very quickly after the failure is resolved. Note that
in later chapters, we use the words robust and resilient interchangeably. We
again look into Nielsen’s work and take 5 to 10 seconds as an absolute maximum
to restore interactive performance.

Limited storage overhead

The nature of the web, and client-centric replication in general, means that there
is no fixed set of replicas that do not change often. In traditional server-centric
replication, each server in a chosen set is assigned an identifier. These servers
can replicate data between each other using their static identifiers. After some
time, a new replica might be added, or an existing replica can be removed, but
this is in general a controlled process with a human in the loop. On the web,
we have two levels of identifiers. First, there are users, these are humans who
should have access to the data and want to replicate it among themselves. Second,
every user has several devices on which they want to replicate their data. To
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further complicate the situation on the web, a single device can have multiple
replicas because multiple browsers are used in parallel, an incognito tab is used
at some point, or simply by clearing the browser cache. This last example might
seem similar to removing a replica, however, unlike the server-centric case where
a human is actively executing a command to remove the replica, and therefore
notifies the other replicas, there is no such notification on the web. Thus, other
replicas cannot differentiate between a removed replica and one that is merely
offline for an extended period. Replication protocols that use client-identifiers, for
example by using vector clocks, will therefore suffer from the so-called problem
of metadata explosion [Llo+13; GPS16]. These protocols must track the growing
number of client identifiers to ensure correctness, resulting in metadata size
inflation over time. Our goal for the protocols in this thesis is to not rely on these
identifiers, which allows us to keep the interactive and robust performance over
time as the size of the metadata will be constant over time.

Data consistency

Data should be replicated in a provably consistent manner. The kind of
consistency can be varied, depending on the application itself: eventual
consistency [Dem+94], strong eventual consistency [Sha+11a], and strong
consistency. With (strong) eventual consistency, replicas can temporarily diverge
for a while, but they will eventually converge to the same value. With eventual
consistency, correct replicas that have delivered the same updates eventually
reach an equivalent state. With strong eventual consistency, correct replicas
that have delivered the same updates have an equivalent state. The difference
between eventual consistency and strong eventual consistency is subtle but
important. An eventually consistent system diverges and later rolls back to
converge again. This rollback requires some form of coordination between the
replicas, making it less scalable for true peer-to-peer client replication. Strong
eventual consistency on the other hand guarantees that when two replicas
received the same set of updates, they will also be in the same state, without the
need to coordinate and resolve conflicts explicitly. Strong consistency is much
stronger and guarantees that all replicas will see updates in the same order.
However, this requires at least global coordination between a majority of the
replicas.

1.3 Approach

To achieve the goal of client-centric replication for the web in different
environments, we concentrate on three distinct settings based on the level
of trust and required consistency level: (E1) strong eventual consistency in
a trusted setting, (E2) strong consistency in a Byzantine setting, and (E3) strong
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Byzantine Trusted
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Figure 1.2: Overview of our three solution environments and contributions with
respect to the level of trust and the required consistency level.

eventual consistency in a Byzantine setting. Figure 1.2 shows an overview of
these environments and how they relate with each other based on trust and
consistency level. One quadrant is empty: strong consistency in a trusted setting.
This represents the textbook case for consistency protocols such as two-phase
commit. This dissertation starts with the easiest case of the three environments:
strong eventual consistency in a trusted setting (E1). Afterward, we move to
the other side of the spectrum: strong consistency in a Byzantine setting (E2).
This is the most difficult case and here we will push the limits for client-centric
replication in terms of performance and scalability. Finally, we move to the
last environment: strong eventual consistency in a Byzantine setting (E3). By
relaxing the consistency level to eventual consistency, we get a more natural fit
for client-centric replication on the web, with many mobile devices. Which also
allows for disconnected operation or ad-hoc collaboration.

For each of these environments, we design a novel replication protocol focusing
on interactive and resilient replication without too much storage overhead or
performance deterioration over time. We implement these protocols in three
distinct browser-based middleware systems and evaluate our protocols in realistic
settings with failures. In our comparative evaluations, we demonstrate resilience,
scalability, and storage overhead improvements compared to existing protocols.

E1: Strong eventual consistency in a trusted setting. (Figure 1.3)

The first environment focuses on a trusted setting, where all replicas are
trusted and have full access to the replicated data. An example use case is
a collaborative graphical document application. Multiple users can edit the
document simultaneously, including when they are offline. Multiple concurrent
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Figure 1.3: (E1) Peer-to-peer network of trusted devices. Each device has a local
copy of the data and can continue making changes even with network partitions.

edits to the same document should be possible, and conflicts should be resolved
in a fine-grained manner. This means that concurrent edits to two different parts
of the document should be possible and that both edits should be reflected in
the final document eventually. Conflicts to the same property should be resolved
automatically, to not burden the user. The replicas both replicate their changes to
a central server but also want ad-hoc peer-to-peer replication. This requirement
is crucial when users are physically together, such as in the same meeting room,
to reduce the latency impact of utilizing a central server. It becomes even more
important when that central server is not reachable, e.g., when the users are
working together on an airplane. In this case, the users can still replicate their
changes with each other and see each other’s changes, even though both are
offline from the perspective of the server.

E2: Strong consistency in a Byzantine setting. (Figure 1.4)

The second environment focuses on an untrusted setting, where the replicas
are not trusted and can be malicious. As an example use case, we consider
an integrated loyalty program between small, local businesses or merchants
at a farmer’s market. Integrated loyalty programs prove more effective than
traditional single-merchant loyalty programs [FT16]. However, as there is an

Figure 1.4: (E2) Peer-to-peer network of untrusted clients, reaching strong
consistency via Byzantine Fault Tolerant consensus.
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Figure 1.5: (E3) Hybrid architecture of a peer-to-peer network with a centralized
server. Not every replica may have access to the actual plain data, and some
devices can even be malicious.

inherent distrust between the merchants, normally a trusted third party has
to be involved to keep track of the loyalty points. This brings an extra burden
and costs to the merchants. We instead propose a decentralized peer-to-peer
network between the merchants to keep track of the loyalty points between them.
Contrary to the first environment, eventual consistency no longer suffices for this
use case. Strong consistency is required to solve the double-spending problem,
where a customer tries to spend the same loyalty points twice at different stores.
This environment does not support offline use, as a supermajority, typically
two-thirds of the replicas, must always be online for consensus to be reached.
However, our focus is on a lightweight and robust protocol, which can quickly
be set up on a mobile device such as a laptop or tablet with a wireless internet
connection.

E3: Strong eventual consistency in a Byzantine setting. (Figure 1.5)

The third environment returns back to the eventually consistent model of E1, but
now in an untrusted setting. Similar use cases as E1 apply, however, the replicas
are now not necessarily trusted. Ideally, data is only replicated between trusted
devices and collaborators, however, this is not always possible. For example,
a user might make edits to a shared document in the afternoon, afterwards,
they shut down their laptop. Another user then opens the document later in
the evening, but since the first user is no longer online, the new edits cannot be
replicated. Although the client-centric approach is beneficial for performance,
security, and availability when users are close to each other, if users are never
online at the same time, no data can be replicated. For this reason, having a
central server, which is online most of the time, can act as a central replication
point that all other replicas can use to replicate their changes to each other
without having to be online at the same time. Nonetheless, there is no reason
to trust this server; data should not be readable by the server, and the server
should not have the ability to modify the data.
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1.4 Contributions

This dissertation provides three key contributions to client-centric replication,
spanning two dimensions: trusted and untrusted environments, as well as strong
eventual consistency and strong consistency:

1. We present OWebSync, which operates in a trusted environment and uses
eventual consistency (E1). It introduces a novel Conflict-free Replicated
Data Type protocol, fully state-based and supporting fine-grained delta-
merging without tracking individual clients.

2. We present BeauForT, which operates in a Byzantine environment with
strong consistency (E2). We introduce a novel approach to synchronizing
consensus votes between replicas, resulting in a fully leaderless protocol.

3. We propose a protocol for replication in an untrusted environment that
offers eventual consistency (E3), without the need to keep track of
individual transactions or clients. It is also the first eventually consistent
protocol to support concurrent data updates and access control policy
changes.

1.5 Overview

The remainder of this dissertation is structured as follows.

Chapter 2 presents and evaluates the first contribution, OWebSync, which focuses
on a trusted environment and offers strong eventual consistency. This work was
published in IEEE Transactions on Parallel and Distributed Systems [JLJ21].
The original publication focused on the evaluation in a client-server architecture.
A follow-up demo at the 2021 International Conference on Service-Oriented
Computing [JLJ22a] showed that the protocol can also be used in a peer-to-peer
architecture.

Chapter 3 presents and evaluates the second contribution, BeauForT, which
focuses on a Byzantine environment and offers strong consistency. This
work was also published in IEEE Transactions on Parallel and Distributed
Systems [Jan+23a].

Chapter 4 presents and evaluates the third contribution, which focuses on an
untrusted environment and offers strong eventual consistency. This work was
published in the 3rd International Workshop on Distributed Infrastructure for the
Common Good [JLJ22b].

Finally, Chapter 5 concludes this dissertation by discussing the limitations of the
contributions and outlining directions for future research.
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In this chapter we present OWebSync: a web-based middleware for data
synchronization in interactive groupware with fast resynchronization of offline
clients and continuous, interactive synchronization of online clients. To
automatically resolve conflicts, OWebSync implements a fine-grained data
synchronization model and leverages state-based Conflict-free Replicated Data
Types. This middleware uses Merkle-trees embedded in the tree-structured data
and virtual Merkle-tree levels to achieve the required interactive performance.
Our comparative evaluation with available operation-based and delta-state-based
middleware solutions shows that OWebSync is especially better at operating
in and recovering from offline settings and network disruptions. In addition,
OWebSync scales more efficiently over time, as it does not store version vectors
or other meta-data for all past clients.

This chapter is strongly based on our published journal article in IEEE
Transactions on Parallel and Distributed Systems in 2021 [JLJ21]. The original
publication and this chapter focus on client-server interactions. However, after
this publication, we have extended this middleware to support also peer-to-peer
interactions in addition to the client-server approach. We replaced the WebSocket
connections between the server and the clients with WebRTC connections between
the clients. No changes are made to the synchronization mechanism mentioned in
this chapter. We demonstrated that this peer-to-peer approach works on a global
scale with live participants on the demonstrations track of the International
Conference on Service-Oriented Computing in 2021, which was organized online
due to COVID [JLJ22a]. Upon the publication of this work, we have also open-
sourced the JavaScript-based middleware to encourage further progress in the
domain. Our evaluation methodology, use case, and evaluation framework for
end-to-end performance testing have also been adopted by others [Wei+22].

This chapter generally illustrates that a purely state-based replication approach
can work interactively for client-centric and peer-to-peer replication. The same
underlying state-based gossip protocol will also be used in the frameworks
proposed in Chapter 3 and Chapter 4. In Chapter 4 we modified this protocol by
replacing the normal Merkle-tree with a Modified Merkle-Patricia-Tree based on
random identifiers rather than the actual structure of the data. This ensures that
the tree remains well-balanced, even when the actual data structure is not. In
future work, this approach can also be applied to the solutions presented in this
chapter to improve replication times for unbalanced tree-structured documents.

© 2021 IEEE. Reprinted, with permission, from Kristof Jannes, Bert Lagaisse, and Wouter Joosen. “OWebSync:
Seamless Synchronization of Distributed Web Clients”. In: IEEE Transactions on Parallel and Distributed Systems
32.9 (2021), pp. 2338–2351. DOI: 10.1109/TPDS.2021.3066276.

https://doi.org/10.1109/TPDS.2021.3066276
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2.1 Introduction

Web applications are the default architecture for many online software services,
both for internal line-of-business applications such as Customer Relationship
Management (CRM), billing, and Human Resources (HR); as well as for customer-
facing services. Browser-based service delivery fully abstracts the heterogeneity
of the clients, solving the deployment and maintenance problems that come with
native applications. Nevertheless, native applications are still used when rich and
highly interactive GUIs are required, or when applications must function offline
for a long time. The former reason is disappearing as HTML5 and JavaScript are
becoming more powerful. The latter reason should be disappearing too with the
arrival of WiFi, 4G, and 5G ubiquitous wireless networks. In reality, connectivity
is often missing for minutes to hours. Mobile employees can be working in
cellars or tunnels, and customers sometimes want to use a web-based service
on an airplane. Although modern HTML5 applications can work offline, data
is typically only available on the server, not on the client-side, and an internet
connection is required to modify this data.

Interactive groupware applications, such as collaborative web applications with
concurrent edits on shared data, should offer prompt data synchronization with
interactive performance when online. We use the term synchronization here to
describe the process of keeping data of multiple replicas eventually consistent
through replication.

This chapter focuses on prompt and seamless synchronization when clients were
offline due to network disruptions while maintaining interactive synchronization
in the online setting. The research of Nielsen on usability engineering [Nie93]
states that remote interactions should take only 1-2 seconds to keep the user
experience seamless and interactive. Users are annoyed after a 5-second waiting
period and 10 seconds is the absolute maximum before users leave the application.

Several client-side frameworks for the synchronization of semi-structured data
exist. They support fine-grained and concurrent updates on local copies of shared
data and operate conflict-free in online and offline situations. However, there is
no generic, fully web-based middleware solution that can be used by interactive
web applications to:

1. achieve continuous and interactive synchronization for online clients and
prompt resynchronization for offline clients,

2. scale to tens of online clients that concurrently edit a document with
interactive performance,

3. tolerate hundreds of clients over time without inflating the data with
versioning metadata.
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State-of-the-art data synchronization frameworks are either operation-based,
state-based, or delta-state-based. Operation-based approaches send the updates
as operations to all replicas. Operational Transformation, as used in Google
Docs1, is a popular operation-based technique for real-time synchronization
in web applications, but it is not resilient against message loss or out-of-order
messages. It requires a central server to transform the operations for other clients
to deal with concurrent changes. Commutative Replicated Data Types [Pre+09;
Sha+11b], as used in SwiftCloud [Zaw+13; Pre+14], Yjs2 [Nic+15; Nic+16] and
Automerge3 [KB17; KB18; HK20], are also operation-based. Again, updates must
be propagated, as operations, to all clients using a reliable, exactly-once, message
channel. However, no transformation is needed because concurrent operations
are commutative. State-based Convergent Replicated Data Types [Sha+11b]
are resilient against message loss but have often been considered problematic
since the full state has to be transferred between all replicas each time. However,
it is used for background synchronization between data centers, e.g., in Riak4.
Merkle Search Trees [AT19] are proposed as a solution to the high bandwidth
usage. It uses Merkle-trees [Mer88] to replicate a basic key-value store like in
Dynamo [DeC+07]. The solution works in large systems with low rates of updates
for asynchronous background synchronization between backend servers; it is not
suited for interactive groupware. Delta-state-based Conflict-free Replicated Data
Types [LLP16], as used in Legion5 [Lin+17], need less of the message channel
than the operation-based approaches. However, they use vector clocks to calculate
delta-updates, which require one entry per writer per object in the server-side
metadata. This does not integrate well with the dynamic nature of the web,
where it is often uncertain if a client will ever connect to a server again.

In this chapter, we present OWebSync, a generic web middleware for data
synchronization in browser-based applications and interactive groupware. It
supports offline usage with fast resynchronization, as well as continuous and
interactive synchronization between online clients. OWebSync provides a generic,
reusable data type, based on JSON [Bra14], that web application developers can
leverage to model their application data. One can nest several map structures
into each other to build a complex tree-structured data model. These data types
support fine-grained and conflict-free synchronization by leveraging state-based
Conflict-free Replicated Data Types (CRDTs). OWebSync solves the scalability
issue that comes with operation-based approaches, where server-side metadata
will grow linearly over time with the number of clients present in the system
at some point. It reduces the required bandwidth by combining several tactics

1https://support.google.com/docs/answer/2494822
2https://github.com/y-js/yjs
3https://github.com/automerge/automerge
4https://docs.basho.com/riak/kv
5https://github.com/albertlinde/Legion

https://support.google.com/docs/answer/2494822
https://github.com/y-js/yjs
https://github.com/automerge/automerge
https://docs.basho.com/riak/kv
https://github.com/albertlinde/Legion
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such as Merkle-trees embedded in the tree-structured data, virtual Merkle-tree
levels, and message batching. As such, OWebSync can achieve the interactive
performance of operation-based approaches, while maintaining the inherent
robustness of state-based approaches.

This chapter is structured as follows. Section 2.2 provides two motivating case
studies and provides background on synchronization mechanisms such as CRDTs.
Section 2.3 describes the underlying data model based on CRDTs and Merkle-
trees. Section 2.4 presents the deployment and synchronization architecture
together with two performance optimization tactics. Section 2.5 compares and
evaluates performance in online and offline situations using OWebSync and
other state-of-the-art synchronization frameworks. We discuss related work in
Section 2.6 and then we conclude.

2.2 Motivation and Background

This section explains the motivation of the goal and approach of OWebSync. First,
we present two case studies of online software services for mobile employees and
customers that often encounter offline settings due to expected or unexpected
network disruptions. We then provide background information on Operational
Transformation, Conflict-free Replicated Data Types, and Merkle-trees.

2.2.1 Case studies

The motivation and requirements emerged from two case studies from our applied
research projects, that have also been used for the evaluation of the middleware.
The first case study is an online software service from eWorkforce, a company that
provides technicians to install network devices for different telecom operators at
their customers’ premises. The second company, eDesigners, offers a web-based
design environment for graphical templates that are applied to mass customer
communication.

eWorkforce. eWorkforce has two kinds of employees that use the online
software service: the help desk operators at the office and the technicians on the
road. The help desk operators accept customer calls, plan technical intervention
jobs, and assign them to a technician. The technicians can check their work
plan on a mobile device and go from customer to customer. They want to see the
details of their next job wherever they are and must be able to indicate which
materials they used for a job. Since they are always on the road, a stable internet
connection is not always available. Moreover, they often work in offline mode
when they work in basements to install hardware. Writing off all used materials
is crucial for correct billing and inventory afterward.
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This case study requires support for long-term offline usage, with quick
synchronization when coming online, especially for last-minute changes to the
work plan of the technicians. The help desk software must be operational at all
times, even without connection to the central database, as customers can call for
support and schedule interventions.

eDesigners. eDesigners offers a customer-facing multi-tenant web application
to create, edit and apply graphical templates for mass communication based on
the customer’s company style. Templates can be edited by multiple users at the
same time, even when offline. When two users edit the same document, a conflict
occurs, and the versions need to be merged. Edits that are independent of each
other should both be applied to the template, e.g., one edit changes the color
of an object, and another edit changes the size. When two users edit the same
property of the same object, only one value can be saved. This should be resolved
automatically to not interrupt the user.

This case study requires that the application is always available, and updates
must always be possible, even offline when working on an airplane. When coming
back online, the updates should be synchronized promptly without requiring the
user or the application to manually resolve conflicts. When working online, the
performance should be interactive, especially when two users are working on the
same template next to each other.

2.2.2 Background

The previous section described the overall goal. In this section, we discuss the
advantages and problems of state-of-the-art techniques such as Operational
Transformation (OT) and Conflict-free Replicated Data Types (CRDTs).

Operational Transformation. OT [EG89] is a technique that is often used to
synchronize concurrent edits on a shared document. It works by sending the
operations to the other replicas. The operations are not necessarily commutative,
which means they cannot be applied immediately on other replicas. A concurrent
edit might conflict with another operation. Therefore, a central server is used to
transform the operations for the different replicas so that the resulting operations
maintain the original semantics. The problem is that the transformation of the
incoming operations of other clients on their local state can get very complex.
Messages can also get lost or can arrive in the wrong order. Hence, OT is not very
resilient against message loss and long-lasting offline situations, as this leads to
low performance [KK10].

Conflict-free Replicated Data Types. CRDTs [Sha+11a; Sha+11b] are data
structures designed for replication that guarantee eventual consistency without
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explicit coordination with other replicas. Conflict-free means that conflicts are
resolved automatically in a systematic and deterministic way, such that the
application or user does not have to deal with conflicts manually. There are
two kinds of CRDTs: operation-based or Commutative Replicated Data Types
(CmRDT) and state-based or Convergent Replicated Data Types (CvRDT).

Commutative Replicated Data Types. CmRDTs [Sha+11a] make use of operations
to reach consistency, just like OT. Concurrent operations in CmRDTs must be
commutative and can be applied in any order. This way, there is no central server
necessary to apply a transformation to the operations. As with OT, CmRDTs
need a reliable message broadcast channel so that every message reaches every
replica exactly-once. Causally ordered delivery is required in some cases.

Convergent Replicated Data Types. CvRDTs [Sha+11a] are based on the state
of the data type. Updates are propagated to other replicas by sending the
whole state and merging the two CvRDTs. For this merge operation, there is
a monotonic join semi-lattice defined. This means that there is a partial order
defined over the possible states and a least-upper-bound operation between two
states. The least-upper-bound is the smallest state that is larger or equal to both
states according to the partial order. To merge two states, the least-upper-bound
is computed, which will be the new state. CvRDTs require little from the message
channel: messages can get lost or arrive out-of-order without a problem since
the whole state is always sent. However, this state can get large and needs to be
communicated every time.

Delta-state CvRDTs. δ-CvRDTs6 [ASB15; ASB18] are a variant of state-based
CRDTs with the advantage that in some cases only part of the state (a delta)
needs to be sent for correct synchronization. When a client performs an update, a
new delta is generated which reflects the update. Each client keeps a list of deltas
and remembers which clients have already acknowledged a delta. As soon as all
clients have acknowledged a delta, it can be discarded because the update is now
reflected in the state of all clients. If a client was offline and has missed too many
deltas, then the full state must be sent, just like with normal state-based CRDTs.

δ-CRDTs have some problems when using them in web applications. Browser-
based clients come and go with a large churn rate and it is often unclear if a
client will come back online in the future (e.g., browser cache cleared). Keeping
extra metadata for all those clients, to be able to synchronize only the required
deltas, can result in a large storage or memory overhead to keep track of them on
the server. One can always discard the metadata for clients that were offline and
send the full state if they do come back online eventually. But this is of course not
efficient when the state is large and the client already had most of the updates.

6https://github.com/peer-base/js-delta-crdts

https://github.com/peer-base/js-delta-crdts
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A variant of δ-CRDTs, called ∆-CRDTs [LLP16], is proposed as a solution to this
problem. ∆-CRDTs are comparable to δ-CRDTs, but instead of keeping track of
the clients at the server, it includes extra metadata about concurrent versions of
all clients in the data model, as vector clocks, to calculate the deltas dynamically.
This solves the problem of keeping track of the deltas for clients at the server,
but it still needs client identifiers and version numbers inside the vector clocks
for each object and each client that made a change.

Another approach to optimize δ-CRDTs is using join decompositions [Ene+16;
Ene+19]. This approach does not extend CRDTs with additional metadata that
needs to be garbage collected. Instead, it can efficiently calculate a minimal delta
to synchronize. This improves the network usage compared to normal δ-CRDTs,
however, it still requires clients to keep track of their neighbors. When there
is no such data available, e.g., after a network partition, it needs to fall back
to a state-based approach. However, it only requires sending the full state in a
single direction, compared to bidirectionally in normal state-based CRDTs. A
digest-driven approach is also supported, which will send a smaller digest of the
actual state. However, for many CRDTs, such digest does not exist and for large,
nested data, this digest would still be large.

2.2.3 Principles

We now introduce two state-based CRDTs and Merkle-Trees. We will use these
as building blocks in the next section for our data model.

LWWRegister. A Last-Write-Wins Register [Sha+11b] is a CvRDT that contains
exactly one value (string, number, or boolean) together with a timestamp of
the last change. This timestamp will be used to merge another replica of this
LWWRegister. The value associated with the highest timestamp is kept, while
the other value is discarded. This conflict resolution strategy boils down to a
simple last-write-wins strategy.

ORSet. An Observed-Removed Set [Sha+11b; Sha17] is a set CvRDT. Internally,
the ORSet contains two sets: the observed set and the removed set. When an
item is added to the set, it is added to the observed set together with a unique
tag. When that item is removed, the associated tag is added to the removed set,
and the item itself is removed from the observed set. This allows an item to be
removed and added multiple times. All items present in the observed set, but not
in the removed set are currently present in the set. The conflict resolution of the
ORSet boils down to an add-wins resolution, i.e. a concurrent add and remove
operation of the same item will result in that item being present in the set since
each add will get a new identifier. To merge a local replica of an ORSet with
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another replica, the union of the respective observed and removed set is taken,
and removed items are removed from the observed set.

Merkle-trees. Merkle-trees [Mer88] or hash-trees are used to quickly compare
two large data structures. Merkle-trees are trees where each node contains a
hash. The values of the leaf nodes are hashed and each hash in an internal node
is the hash of the hashes of all its immediate children. Two data structures can
now be compared starting from the two top-level hashes. If the top-level hashes
match, the data structures are equal. Otherwise, the tree can be descended
using the mismatching hashes to find the mismatching items. Sub-trees that
are already equal will have equal hashes at their top nodes, so they do not need
further verification.

2.3 The OWebSync Data Model

This section describes the data model of OWebSync that will be used for
synchronization. The data model is a CvRDT for the efficient replication of
JSON data structures and applies Merkle-trees internally to quickly find data
changes.

2.3.1 Approach

OWebSync uses state-based CRDTs, which require little from the message
channel compared to operation-based approaches. No state about other clients
or client-based versioning metadata needs to be stored, unlike delta-state
approaches. And even after long offline periods, the missed updates can be
computed and synchronized seamlessly. To limit the overhead of full-state
exchanges between clients and server, we adopt Merkle-trees in the data structure
to find the items that need to be synchronized efficiently. The CvRDT consists
of two types: a LWWRegister and an ORMap extended with a Merkle-tree. The
LWWRegister is used to store values in the leaves of the tree and is implemented
as described by Shapiro et al. [Sha+11b]. The ORMap is a recursive data structure
that represents a map containing a mapping from strings to other ORMaps or
LWWRegisters.

2.3.2 Observed-Removed Map

The ORMap is implemented starting from a state-based Observed-Removed
Set [Sha17]. The items in the observed set are key-value pairs, where a key is
a string, and the value is a reference to another CvRDT. Concurrent edits to
different keys can be made without a problem. Edits to the same key and tag will
be delegated to the child CRDT: either another ORMap or a LWWRegister. If two
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Algorithm 1 Simplified implementation of the query-, update- and merge
operations of an ORMap with a Merkle-tree for synchronization.

KV ▷ Key-value store
p0..pn ▷ Array representation of a path in the tree

1: state:
2: O ←; ▷ Observed set with tuples (key, tag,hash)
3: R ←; ▷ Removed set with tags
4: P ATH ▷ The path of this ORMap
5: query: GET (p0..pn)
6: if ∃o ∈O : o.key= p0 then
7: c ← KV .GET(P ATH+ o.key)
8: return c.GET(p1..pn)
9: return ⊥

10: update: SET (p0..pn, value)
11: if ∃o ∈O : o.key= p0 then
12: c ← KV .GET(P ATH+ o.key)
13: c.SET(p1..pn,value)
14: o.hash ← c.hash
15: else
16: if LEN(p0..pn)= 1∧ IS_PRIMITIVE(value) then
17: c ← NEW_LWWREGISTER(P ATH+ p0)
18: else
19: c ← NEW_ORMAP(P ATH+ p0)
20: c.SET(p1..pn,value)
21: O ←O∪ {(p0, UNIQUE(), c.hash)}
22: update: REMOVE (p0..pn)
23: if ∃o ∈O : o.key= p0 then
24: if LEN(p0..pn)= 1 then
25: O ←O \{o}
26: R ← R∪ {o.tag}
27: else
28: c ← KV .GET(P ATH+ o.key)
29: c.REMOVE(p1..pn)
30: o.hash ← c.hash
31: update: REMOVE_WITH_TAG (p0..pn, tag)
32: if LEN(p0..pn)= 0 then
33: if ∃o ∈O : o.tag = tag then
34: O ←O \{o}
35: R ← R∪ {o.tag}

(Continues in Algorithm 2)
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Algorithm 2 Simplified implementation of the query-, update- and merge
operations of an ORMap with a Merkle-tree for synchronization. (continued)
36: else if ∃o ∈O : o.key= p0 then
37: c ← KV .GET(P ATH+ o.key)
38: c.REMOVE_WITH_TAG(p1..pn, tag)
39: o.hash ← c.hash
40: merge: MERGE (p0..pn, remote)
41: N ←; ▷ paths that need synchronization
42: if LEN(p0..pn)= 0 then
43: R ← R∪ remote.R
44: O ← {o ∈O : o.tag ̸∈ R}
45: for all ro ∈ remote.O : ro.tag ∉ R do
46: if ∃o ∈O : o.key= ro.key then
47: if o.tag ̸= ro.tag then
48: if ro.tag > o.tag then
49: o.tag ← ro.tag
50: else
51: N ← N ∪ {P ATH}
52: if o.hash ̸= ro.hash then
53: N ← N ∪ {P ATH+ o.key}
54: else
55: N ← N ∪ {P ATH+ ro.key}
56: else
57: if ∃o ∈O : o.key= p0 then
58: c ← KV .GET(P ATH+ o.key)
59: N ← N ∪ c.MERGE(p1..pn, remote)
60: o.hash ← c.hash
61: else
62: if LEN(p0..pn)= 1
63: ∧ TYPEOF(remote)=LWWRegister then
64: c ← NEW_LWWREGISTER(P ATH+ p0)
65: else
66: c ← NEW_ORMAP(P ATH+ p0)
67: N ← N ∪ c.MERGE(p1..pn, remote)
68: O ←O∪ {(p0, c.tag, c.hash)}
69: return N
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different replicas add the same key, they will get a different tag. This situation
is difficult to resolve, and we opted to merge the two values, keeping only the
lexicographical greatest tag. As a result, a single replica of an ORMap has at
most one value for a key.

We made two extensions to this basic ORMap to make state-based synchroniza-
tion more efficient. First, we extended this data structure with a Merkle-tree
using the object’s logical tree-structure. This means that we keep an extra hash
for all items in the observed set. When the child is a LWWRegister, the hash is
the hash of the value of that register. When the child is another ORMap, the
hash of it is the combined hash of the hashes of all its children, lexicographically
ordered on the unique tags. This way, when one value in a register changes, all
the hashes of the parents will also change so that a change can be detected by
only comparing the top-level hash. Second, we do not store a child CRDT inside
the observed set, instead, we only store the tag, key, and hash of that CRDT. The
child CRDTs can be stored elsewhere using its path as a unique key.

Algorithm 1 and 2 show the specification of the OWebSync ORMap with our two
extensions. It supports several operations to query, update and merge this data
structure. The GET operation is equal to the one in a basic ORMap. There is
always at most one single object in the observed set with a specific key. The
SET and REMOVE operations are also similar but require updating the hash to
keep the Merkle-tree up-to-date. The internal REMOVE_WITH_TAG operation
removes a single element, based on the tag instead of the key.

The MERGE operation is modified to make use of the Merkle-tree. It accepts
a path in the tree and the ORMap of that path from the remote replica. The
received ORMap only contains the metadata of its children, and not the actual
child CRDTs. The MERGE will detect which branches of the tree are changed and
returns all paths of those branches. In the next step, the synchronization protocol
will use those returned paths to descend in the tree and continue the MERGE in
these branches. Only the returned paths are merged further, the other branches
of the tree do not need further processing. By splitting up this operation per level
in the tree, only the updated registers and parent ORMaps need to be sent over
the network, improving both the bandwidth usage as well as saving computation
power as not all CRDTs need to be merged. We explain this synchronization
protocol in more detail in Section 2.4. We use a key-value store to store the
CRDTs, called KV in the specification.

Proof sketch. A state-based object is a CvRDT when the states of that object form
a monotonic join semilattice. This means that there is partial order defined over
the states, and a least upper bound (LUB) operation on two states which results
in the smallest state that is larger or equal to the two given states according to
the partial order [Sha+11b; Sha+11a]. The partial order of the modified ORMap
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{
"drawing1": {

"object36": {
"fill": "#f00",
"height": 50,
"left": 50,
"top": 100,
"type": "rect",
"width": 80

}
}

}

Figure 2.1: JSON data structure of the eDesigners case study.

defined here is similar to the ORSet [Sha17], which contains two grow-only sets.
As an optimization, removed items are only present in the removed-set and are
removed from the observed-set, however, conceptually they are still part of the
observed-set when determining the partial order. The LUB operation, equal to
the MERGE operation in Algorithm 2, takes the union of the respective observed-
and removed-set. Again using the optimization that removed items are not
actually stored in the observed-set anymore. Two complications added here are
the key and the hash. When a key is present in both ORMaps, with a different
tag, the LUB operation will only keep the largest tag, and merge the two values
according to the rules of the child CRDT. The other tag is considered removed.
When the hash differs, the two values are merged according to the rules of the
child CRDT, after which the hashes will become equal. A new item in the remote
observed-set is not immediately added to the local observed-set, instead the path
of that branch is returned. Later, MERGE will be called with the child, and the
item is added to the observed-set. This addition is delayed to make it possible to
infer the type of the child CRDT.

In reality, the merge is split into two phases. However, the first phase is only
used to determine which parts of the child CRDTs have to be merged further
and which parts are already equal between the two replicas. The actual merge is
done in the second phase when the leaf CRDTs are received. Only then will all
the hashes be updated all the way to the root CRDT. While we do not provide a
formal proof that the CRDT properties are kept intact, each time we update the
state and metadata of the CRDTs, we are following the rules of existing CRDTs
(ORSet and LWWRegister), which are formally proven.

Example. As an example, we illustrate the conceptual representation of an
application data object in the eDesigners case study, as well as the resulting
underlying CRDTs in the OWebSync data model. Figure 2.1 present a JSON
data structure of a drawing with one rectangle object. Figure 2.2 represents
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{
"drawing1.object36": {

"tag": "0a2f7bc2-129f-11e9-ab14-d663bd873d93",
"hash": "7319eae53558516daafac19183f2ee34",
"observed": [

{
"key": "top",
"tag": "23c1259a-129f-11e9-ab14-d663bd873d93",
"hash": "65bdd1b610f629e54d05459c00523a2b"

},
{

"key": "left",
"tag": "0eac2a3a-546f-11e9-8647-d663bd873d93",
"hash": "67507876941285085484984080f5951e"

},
...

],
"removed": []

},
"drawing1.object36.top": {

"tag": "23c1259a-129f-11e9-ab14-d663bd873d93",
"hash": "65bdd1b610f629e54d05459c00523a2b",
"timestamp": 789778800000,
"value": "100"

}
}

Figure 2.2: Internal structure of two key-values that represent object36 and
the property top of the JSON data structure in Figure 2.1. We use a JSON
notation here, however, in practice, these two key-values are stored in a binary
format in a key-value store.

the internal structure of two CRDTs in that JSON structure. First, the key
under which the CRDT is stored in a key-value store is listed, then the internal
value of the CRDT. There is an ORMap stored in the key-value store for
key "" (the root of the tree), "drawing1", and "drawing1.object36".
Only "drawing1.object36" is shown in the figure. For all the leaf-values,
there is a LWWRegister stored under the respective keys, for conciseness,
only "drawing1.object36.top" is shown. The application developer only
needs to know about the conceptual JSON representation, the middleware will
automatically translate this data model and its operations to the underlying
CRDTs and maintain the Merkle-tree and the internal CRDT structure. When a
user modifies the "top" property, its hash and the hash of all the parents will
change. The MERGE procedure will be called with p0..pn empty and return
the branches that have changed: {drawing1}. MERGE will now again be
called with p0 ="drawing1" and the respective remote CRDT, and will return
{drawing1.object36}. This process will continue until it reaches a leaf value.
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2.3.3 Considerations and discussion

The data model is best suited for semi-structured data that is produced and edited
by concurrent users. Any data that can be modeled in a tree-like structure such
as nested maps and that can tolerate eventual consistency, can use OWebSync for
the synchronization. Examples are the data items in the case studies: graphical
templates, a set of tasks, or used materials for a task. This data model is less
suited for applications such as online banking which requires constraints on the
data such as: “your balance can never be less than zero”. Text editing is also
not a great fit, because there is not much structure in the data. If you would see
text as a list of characters, it would result in a tree with one top-level node and
one level with many child nodes: the characters. There is no benefit in using a
Merkle-tree here.

Developers have two choices. They can either pass a JSON object, and every
JSON map will be mapped to an ORMap, and the leaf values to LWWRegisters.
Or they can stringify an object so that the full object is mapped to a LWWRegister.
As a result, changes will be atomic.

The timestamps in the LWWRegisters are provided by the clients and we do not
consider malicious clients. We also assume loosely synchronized clocks. If this
assumption is not met, an accidental fault resulting in a clock several years in the
future might make edits to this LWWRegister impossible. Users can resolve this
manually by removing that register and creating a new one with the same key
in the ORMap, losing concurrent changes. We do not consider this an important
drawback, as most personal devices these days automatically synchronize their
time with the internet.

In the current data model, the ORMap keeps the tags of all removed children
eternally, so-called tombstones. As a result, the size of an ORMap accumulates
over time and performance will degrade. With a modest usage of deletion, this
will not be a problem. Even when you remove a large sub-tree of several levels
deep, only the tag of its root is kept in the parent. One strategy to clean up
tombstones could be to remove those older than, e.g., one month. We then
expect that a client will not be offline for more than a month while performing
concurrent edits. This can be enforced by logging out the user after a month of no
usage. Delta-state-based CRDTs can avoid tombstones by encoding the causal
context as a compact version vector. However, this vector grows in size with the
number of clients that make changes to this ORMap. Since we target a dynamic
environment such as the web, we opted for tombstones, which can be garbage
collected after a sufficiently long time. Web clients come and go, without

Another kind of conflict occurs when two different types of CRDTs are assigned
concurrently at the same position in the JSON structure. In this case, the merge-
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operation of the defined CRDTs cannot be used to resolve the conflict. This is
solved by posing an order on the possible CRDTs, e.g., LWWRegister < ORMap.
This means that when such a conflict occurs, the conflict will be resolved by
keeping the ORMap and discarding the LWWRegister.

Another conflict is a concurrent remove and update of a child CRDT. The CRDT
proposed here maintains a remove-wins semantic. This means that updates done
to children are discarded when the parent is removed concurrently.

Ordered lists are currently not supported by OWebSync. We focused on the
initial key data structures: last-write-wins registers and maps. Keeping a total
numbered order, as lists do, is not needed in our use cases. Unique IDs in a map
are better suited in a distributed setting. In the case studies, the ordering of
items in a set was based on application-specific properties such as dates, times, or
other values, instead of an auto-incremented number of a list. However, CvRDTs
for ordered lists exist [Sha+11b; Roh+11] and could be added in future work.
Adding new kinds of CRDTs to the data model is straightforward. An existing
CvRDT can be used as is, except for an extra hash to be part of the Merkle-tree.
For a CRDT that represents a leaf value (e.g., a Multi-Value Register [Sha+11b]),
the hash is simply the hash of that value. For CRDTs that can contain other
values, the hash must combine the hashes of all the children.

2.4 Architecture and Synchronization

This section describes the deployment and execution architecture of OWebSync
as well as the synchronization protocol. This middleware architecture is key to
supporting the data- and synchronization model described in the previous section.
We also elaborate on a set of key performance optimization tactics to achieve
continuous, prompt synchronization for online interactive clients.

2.4.1 Overall architecture

The middleware architecture is depicted in Figure 2.3 and consists of a client
and a server subsystem. The client-tier middleware API is fully implemented
in JavaScript and runs completely in the browser, without add-ins or plugins.
The server is a lightweight process, which listens to incoming web requests. The
server is only responsible for data synchronization, it does not run application
logic. Both the client and the server have a key-value store to persist data, and
they communicate using only web-based HTTP traffic and WebSockets [Hic12].
All communication messages are sent and received inside the client and
server subsystems using asynchronous workers. The tags in the ORMap are
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Figure 2.3: Overall architecture of the OWebSync middleware.

UUIDs [LSM05] and we use the MD57 [Riv92] algorithm for hashing. We
first elaborate on the client-tier subsystem with the public middleware API
for applications, and then describe the client-server synchronization protocol.

2.4.2 Client-tier middleware and API

The public programming API of the middleware is located at the client-tier, and
web applications are developed as client-side JavaScript applications that use
this API:

• GET(path): returns a JavaScript object or primitive value for a given
path.

• LISTEN(path, callback): similar to GET, but every time the value
changes, the callback is executed.

• SET(path, value): set or update a value.

• REMOVE(path): remove a value or branch.

The OWebSync middleware is loaded as a JavaScript library in the client and
the middleware is then available in the global scope of the web page. One can
then load and edit data using typical JavaScript paths. An example from the
eDesigners case study:

let d1 = await OWebSync.get("drawing1")
d1.object36.color = "#f00"
OWebSync.set("drawing1", d1)

7We do not need a cryptographically secure hash algorithm, as every replica is trusted in this
chapter. Furthermore, MD5 is the fastest hashing algorithm which is supported by browsers natively.
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Client Server1: [GET "drawing1"]

2: [PUSH "drawing1"]

3: [PUSH "drawing1.object36"]

4: [PUSH "drawing1.object36.color"]

5: []

Figure 2.4: Synchronization protocol when another client updated the color. A
GET message only sends the path and hash value, and a PUSH message also sends
the respective CRDT. E.g., for message 3, this is the first CRDT in Figure 2.2.

The object "drawing1" is fetched from disk and is represented as a JavaScript
object in memory. If there would be other drawings (e.g., "drawing2"), these
will not be loaded. The access to "d1.object36.color" is just a plain
JavaScript object access and does not involve OWebSync. Modifications to this
object are not synchronized, nor are updates from other replicas reflected in this
object. The last line (set) will save the modified object and replicate it to other
replicas asynchronously. For performance reasons, it is best to always scope to
the smallest possible object from the database, in this example that would be:

OWebSync.set("drawing1.object36.color", "#f00")

To reduce possible conflicts and outdated representations, a developer should use
set every time the user makes a change, and should use listen to update the
in-memory representation each time updates from other replicas are received.

2.4.3 Synchronization protocol

The synchronization protocol between client and server consists of three key
messages that the client can send to the server and vice versa:

• GET(path, hash): the receiver returns the CRDT at a given path if the
hash is different from its own CRDT at the given path.

• PUSH(path, CRDT): the sender sends the CRDT data structure at a
given path and the receiver will merge it at the given path.

• REMOVE(path, tag): removes the CRDT at a given path if the unique
identifier of the value is matching the given tag. As such, a newer value
with a different tag will not be removed.
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Algorithm 3 Specification of the synchronization protocol, using the ORMap
specified in Section 2.3. Some details are abstracted for conciseness.

KV ▷ Key-value store
1: sync: SYNC (msgs)
2: resp ←[]
3: for all msg ∈ msgs do
4: if msg ≡GET(path,hash) then
5: c ← KV .GET(path)
6: if c.hash ̸= hash then
7: resp.APPEND(PUSH(path, c))
8: else if msg ≡PUSH(path, crdt) then
9: c ← KV .GET("")

10: paths ← c.MERGE(path.SPLIT("."), crdt)
11: ▷ Procedure from Algorithm 2
12: for all p ∈ paths do
13: if KV .HAS(p) then
14: c ← KV .GET(p)
15: resp.APPEND(PUSH(p, c))
16: else
17: resp.APPEND(GET(p,⊥))
18: else if msg ≡REMOVE(path, tag) then
19: c ← KV .GET("")
20: c.REMOVE_WITH_TAG(path.SPLIT("."), tag)
21: return resp ▷ Procedure from Algorithm 1

The protocol, depicted in Algorithm 3, is initiated by a client, which will traverse
the Merkle-tree of the CRDTs. The synchronization starts with the CRDT in the
root of the tree. The client will send a GET message to the server with the given
path and hash value of the CRDT. If the server concludes that the hash of the
path matches the client’s hash, the synchronization stops. An empty message is
sent to signal this to the other side. All data is consistent at that time. If the
hash does not match, the server returns a PUSH message with the CRDT that
is located at the path requested by the client. This does not include the child
CRDTs, only the metadata (key, tag, and hash) of the immediate children. The
client must merge the new CRDT with the CRDT at its requested path. The
specification is listed in Algorithm 2. The MERGE operation returns a set with
all changed paths. Those paths are the paths of the conflicting CRDTs that still
need to be synchronized. The client will then PUSH the CRDTs belonging to those
paths to the server. The server then needs to merge those CRDTs. If a child does
not yet exist, an empty child is created and a GET message is sent. The process
continues by traversing the tree and exchanging PUSH and GET messages until
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the leaves of the tree are reached. The CRDT in this leaf is a register and can be
merged immediately. All parents of this leaf are now updated such that finally
the top-level hash of the client and server match. If the top-level hashes do
not match, other updates have been done in the meantime, and the process is
repeated. Per PUSH message that is sent, the process descends one level in the
Merkle-tree. The length of the synchronization protocol is therefore limited to
the maximum depth of the Merkle-tree.

The third type of message, REMOVE, is not strictly necessary but can improve the
bandwidth requirements. If during this synchronization process between a client
and the server, a child is removed at one side, but not at the other side, a REMOVE
message is sent to the other party so that it can remove that value and add the
tag to the removed set of the correct ORMap. Alternatively, this additional third
message type of REMOVE could be avoided if a PUSH of the parent would be sent
instead. However, the push of a parent with many children would cause a serious
overhead compared to a REMOVE message with only a path and a tag.

Figure 2.4 shows an example of the eDesigners case study where the client
changed the color of an object. If the client had made multiple changes, e.g., he
also changed the height, the start of the synchronization protocol would be the
same, except that the height will also be included in message four.

2.4.4 Performance optimization tactics

The main optimization tactic to achieve prompt synchronization for interactive
groupware is the reduction of network traffic by the Merkle-trees. However, there
are additional tactics needed to further improve synchronization time. To reduce
the overhead of the synchronization protocol between the many clients and the
server, two optimization tactics are applied by both the client and the server.

Virtual Merkle-tree levels

When the number of child values in an ORMap increases, all the metadata
for those children (key, tag, and hash) needs to be sent each time during the
synchronization to check for changes. This leads to very high network usage
since it cannot make use of the Merkle-tree efficiently. To solve this problem, we
introduced extra, virtual, levels in the Merkle-tree. Whenever an ORMap needs
to be transmitted which contains many children (i.e., hundreds), instead an extra
Merkle-tree level is sent. This extra level combines the many children in groups
of, e.g., 10. This number can be adapted to the total number of children. As a
result, 10 times fewer hashes will be sent, combined with the key-ranges the
hashes belong to. The other party can verify the hashes and determine which
ones are changed and then push the 10 children for which the combined hash
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did not match. This improvement leads to a slight delay in synchronization time
since it adds one extra round-trip, but when only a small part of the children is
updated, it uses much less bandwidth and reduces the computation time.

Message batching

In the basic protocol, all messages are sent to the other party as soon as a
mismatch of a hash in the Merkle-tree is detected. This leads to lots of small
messages (GET, PUSH, and REMOVE) being sent out, and as a consequence, many
messages are coming in while still doing the first synchronization. This results
in many duplicated messages and a lot of duplicated work on sub-trees since the
top-level hash will only be up-to-date when the bottom of the tree is synchronized.
To solve this problem, all messages are grouped in a list and are sent out in one
batch after a full pass of a whole level of the tree has occurred. On the other side,
the messages are processed concurrently, and all resulting messages are again
grouped in a list and are only sent out after the incoming batch was fully iterated.
If no further messages are resulting from the processing of a batch, an empty list
is sent to the other party to end the synchronization. As a result, fewer messages
are sent between a client and server, and only one synchronization round per
client is occurring at the same time, resulting in no duplicated messages and
work on sub-trees.

2.5 Performance evaluation

The performance evaluation will focus on situations where all clients are
continuously online, as well as on situations where the network is interrupted.
For online situations, we are especially interested in the time it takes to distribute
and apply an update to all other clients that are editing the same data. For the
offline situation, we are especially interested in the time it takes for all clients to
get back in sync with each other after the network disruption, and in the time it
takes to restore normal interactive performance.

The performance evaluation in this chapter is performed using the eDesigners
case study, as this scenario has the largest set of shared data and objects
between users. The eWorkforce case study has fewer shared data with fewer
concurrent updates as technicians typically work on their own data island
and the data contains fewer objects with less frequent changes. To compare
performance, we implemented the case study 5 times on 5 representative
JavaScript technologies for web-based data synchronization: our OWebSync
platform, which uses state-based CRDTs with Merkle-trees, Yjs8 and Automerge9

8https://github.com/y-js/yjs
9https://github.com/automerge/automerge

https://github.com/y-js/yjs
https://github.com/automerge/automerge
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which use operation-based CRDTs, and ShareDB10 which makes use of OT. We
used Legion [Lin+17] for testing delta-state CRDTs. Both Yjs (2698 GitHub stars)
and ShareDB (3768 GitHub stars) are widely used open-source technologies
available on GitHub. Automerge is the implementation of the JSON data type of
Kleppmann and Beresford [KB17]. Legion is the implementation of ∆-CRDTs of
van der Linde [LLP16; Lin+17]. We did not evaluate Google Docs, which uses OT,
as it is text-based, and can not be used to synchronize the JSON documents used
in the test. Instead, we opted for ShareDB. We use Fabric.js11 for the graphical
interface.

Test setup. Both the clients and the server are deployed as separate Docker
containers on a set of VMs in the Azure12 public cloud. A VM has 4 vCPU cores
and 8 GB of RAM (Standard A4 v2) and holds up to 3 client containers. A client
container contains a browser that loads the client-side middleware from the
server. The middleware server is deployed on a separate VM (Standard F4s
v2). The monitoring server that captures all performance data is deployed on
a separate VM. So, this experiment consists of 10 VMs in total, one server VM,
one monitoring VM, and 8 client VMs that each can represent up to 3 clients
isolated with Docker. They are deployed in the same data center, but Azure does
not offer insight into whether two VMs are located on the same physical machine
or not. VMs in Azure have their clocks synchronized with the host machine,
which is synchronized with the internal Microsoft time servers. The Linux tc
tool [Alm99] is used to artificially increase the latency between the containers
to an average of 60 ms with 10 ms jitter, which resembles the latency of a 4G
network in the US [Ope19].

Our evaluation contains three benchmarks. The first benchmark represents the
continuous online scenario where clients are making updates for 10 minutes and
stay online the whole time. The second benchmark is the offline scenario where
the network connection between the clients and the server is disrupted during
the test. The third and last benchmark is used to measure the total size of the
data set over a longer time period.

2.5.1 Performance of continuous online updates

The first benchmark represents the continuous online scenario where clients
are making updates for 10 minutes and stay online the whole time. In total,
we executed 30 tests for this benchmark: 6 tests to be executed by each of the
5 technologies. These 6 tests vary in the number of clients and data size: 8,
16, or 24 clients are performing continuous concurrent updates on 100 or 1000

10https://github.com/share/sharedb
11https://github.com/fabricjs/fabric.js
12https://azure.microsoft.com

https://github.com/share/sharedb
https://github.com/fabricjs/fabric.js
https://azure.microsoft.com
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objects in a single shared data set. One such object was shown in Figure 2.1
in Section 2.3 and has 7 attributes. The total depth of the tree is four (root –
drawing1 – object36 – top). The root has one child, while drawing1 has
either 100 or 1000 children. And these children have each 7 children. This is the
shape of the tree defined by the application, however, because drawing1 has
many children, OWebSync will transparently add an extra layer in the tree to
reduce the network usage. This increases the total depth of the tree to 5.

Each client edits one object, which leads to two random writes, the x and y
position, on a shared object every second. We use at most 24 clients, which are
editing the same document concurrently. In comparison, Google Docs, which
is the most popular collaborative editing system today, supports a maximum
of 100 concurrent users according to Google itself13. But in practice, latency
starts to increase significantly when the number of users exceeds 10 [DI16]. Our
performance results show the same problem for ShareDB, which uses the same
technique. In our performance evaluation, one iteration of a test takes 10 minutes.
Before each test, the database is populated and the initial synchronization is
performed. The first minute is used for warm-up. To ensure the stability of the
test results, all tests are repeated 10 times.

The following performance measurements quantify the statistical division of the
time it takes to synchronize a single update to all other clients in the case of
a continuous online situation. The synchronization times of the updates are
illustrated in Figure 2.5.

Analysis of the results. For the test with 8 clients and 100 objects, all operation-
based approaches (ShareDB, Yjs, and Automerge) synchronize the updates faster
than the state-based approaches (Legion and OWebSync). For these three
operation-based approaches, 99% is below 0.3 seconds. Legion needs about 1.0
seconds for synchronizing the 99th percentile and OWebSync needs 1.3 seconds.
The reason for this is that Legion and OWebSync do not keep track of which
updates have been sent to which client. Hence, each time the data is synchronized,
a few extra round trips are required to calculate which updates are needed.
ShareDB, Yjs, and Automerge can just send the operations. On a faster network,
with less latency, both Legion and OWebSync will be able to synchronize faster
than in this test, since the round-trip time will be less. But even with this
high latency in this benchmark, OWebSync performs within the guidelines of
1-2 seconds for interactive performance. For the test with 24 clients and 1000
objects, ShareDB has raised to 7.7 seconds for the 99th percentile. The server
cannot keep up with transforming the incoming operations. Since the operations
in Yjs and Automerge are commutative and do not need a transformation, the
server does not become a bottleneck. These tests show that state-based CRDTs,

13https://support.google.com/docs/answer/2494822

https://support.google.com/docs/answer/2494822
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Figure 2.6: Network usage per client for each test in the online scenario.

which are currently only used for background synchronization between servers,
can also be used in interactive groupware. This improvement is due to the use
of Merkle-trees embedded in the data structure, the use of virtual Merkle-tree
levels for large objects, and message batching.

Network trade-off. The trade-off for this scalable, prompt synchronization,
is that OWebSync has a rather large network usage compared to the other
tested technologies (Figure 2.6). Only Automerge requires more bandwidth
because it stores the whole history and uses long text-based UUIDs as client
identifiers, compared to just integers in Legion. The usage of Merkle-trees
reduced the network usage of OWebSync by about a factor 8 in the worst case
(1000 objects under a single node in the tree), compared to normal state-based
CRDTs. Introducing extra, virtual, levels in the Merkle-tree for nodes with many
children lowered the bandwidth with another factor 3. Even in the test with 24
clients and 1000 objects, the used bandwidth is only 360 kbit/s per client. This
is much less than the available bandwidth, which is on average 27 Mbit/s on
a mobile network in the US14. The server consumes about 8.7 Mbit/s, which is
acceptable for a typical data center. The data structure has an important effect on
the network usage. One might create a tree-structure with few nodes which have
many children. This will make the Merkle-tree less useful since the metadata of
all the children needs to be exchanged to be able to determine which children are
updated. This can be seen in Figure 2.6 by comparing the network usage of the
tests with 100 objects to the tests with 1000 objects. The other possibility is that
there are fewer children per node, but with an increased depth of the tree. This
positively affects the network usage, as less metadata will need to be exchanged.
However, synchronizing the whole tree will take more round trips as there are
more levels in the tree.

CPU usage. We show the CPU usage for the experiment with 24 clients and 1000
objects in Table 2.1. The average client-side CPU usage for OWebSync is 9%,

14https://www.speedtest.net/reports/united-states/2018/Mobile/

https://www.speedtest.net/reports/united-states/2018/Mobile/
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which is similar to Legion and ShareDB, and about half of Yjs and Automerge.
The server-side CPU usage for OWebSync is higher, 33%, as it essentially needs
to run the same synchronization protocol for every client. It still performs better
than ShareDB, which uses OT and needs to transform all operations on the
server before they are sent to the clients. The operation-based approach of Yjs
and Automerge, and the delta-state-based approach of Legion, are more efficient,
as the server can keep track of which client needs which updates. Automerge
performs worse than expected, but we assume that this is because it stores the
whole history and uses long text-based UUIDs as client identifiers.

Interpretation and discussion. For interactive web applications and groupware,
usability guidelines [Nie93; Nie10] state that remote response times should be
1 to 2 seconds on average. 3 to 5 seconds is the absolute maximum before
users are annoyed. The user is often leaving the web application after 10
seconds of waiting time. We start from these numbers to assess the update
propagation time between users in a collaborative interactive online application
with continuous updates. We are interested in the time for a user to receive an
update from another online user. These numbers should be achieved not only for
the average user (the mean synchronization time) but also for the 99th percentile
(i.e., most of the users [DeC+07]). The 99th percentile for the synchronization
time of the OWebSync test with 24 clients and 1000 objects is below 1.5 seconds.
ShareDB operates with sub-second synchronization times when sharing 100
objects between 8 writers. But when the number of objects and writers increases,
the synchronization time raises to 7.7 seconds for the 99th percentile. This is in
line with the observations of Dang et al. [DI16] for Google Docs, which also uses
OT. The other technologies stay well below 5 seconds in the online scenario and
can be called interactive.

2.5.2 Performance in disconnected scenarios

We now present the performance analysis when the network between the clients
and the server is disrupted. In these tests, we have an analogous test setup.
However, during the 10-minute execution, we start dropping all messages after 3
minutes for 1 minute (shown at 2 minutes in the graphs as the first minute is used
as a warm-up). This 1-minute network disruption will lead to many conflicting
operations, which will automatically be resolved by the middleware. During the
disruption, there will be 1440 offline updates in the largest experiment with 24
clients. A longer offline period will not change much for OWebSync since only the
state is kept and the same client moving the same object twice will result in the
same amount of state to be sent. Operation-based approaches will take longer
when the time increases since they have to send all operations anyway.
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We evaluate the time that is needed to achieve full bidirectional synchronization
of all concurrent updates on all clients during the network disruption. We also
evaluate the time that is needed to restore normal interactive performance in
the online setting after the disruption.

Analysis of the results. The boxplots of these tests, shown in Figure 2.7, show
that OWebSync can synchronize all missed updates faster than ShareDB, Yjs,
Automerge, and Legion. Note that these boxplots are different from the previous
figure. At the median of these boxplots, only 50% of the missed updates are
synchronized. Only at the upper whisker, most of the missed updates are fully
synchronized. Whiskers have a maximum of 1.5 times the interquartile range.

Then, each user is fully up-to-date with everything that was updated during the
network disruption. In the large-scale scenario with 24 clients and 1000 updates,
the time to synchronize all missed updates in case of network failure is 3.5
seconds for the 99th percentile for OWebSync, which is acceptable for interactive
web applications. The other technologies need more than 5 seconds to only
synchronize half of the missed updates, meaning that users will become annoyed.
The operation-based approaches need several tens of seconds to synchronize all
of the missed updates because they must replay all missed operations on the
clients that were offline. This is due to their operation-based nature. OWebSync
only needs to merge the new state, which it does in the same way as if the failure
never happened. Legion could keep up with OWebSync in the online scenario,
but now we see that resynchronization after network disruptions starts to take
longer when the scale of the test or the size of the data set increases.

Timeline analysis of the tests. The timelines in Figure 2.8 show the resynchroniza-
tion times on the y-axis, without the offline time during the network disruption,
for each update done at a given moment during the test timeline. This means
that for an update done 20 seconds before the end of the disruption, and which
got synchronized to all other clients 22 seconds later, the resynchronization time
is 2 seconds.

In the test with 24 clients and 1000 objects, OWebSync quickly returns to the
same performance as before the network disruption. Legion needs more time to
synchronize the missed updates, but also quickly returns to the same performance.
The operation-based approaches take much longer to synchronize missed updates
and take tens of seconds to return to the original performance. ShareDB and
Automerge need more than half a minute to return to the same interactive
performance as before. This means that in a setting with frequent disconnections,
the user will not be able to regain interactive performance. When coming back
online, those technologies cannot achieve prompt and interactive synchronization
immediately.
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Figure 2.8: Mean time to synchronize updates in case of a network disruption
between minutes 2 and 3 for the test with 24 clients and 1000 objects.

2.5.3 Total size of the data model

The third and last benchmark is used to measure the total size of the data set
over a longer time (2 hours). Every 10 minutes, 5 new client browsers will
start making changes. After those 10 minutes, the browsers are shut down and
replaced by others. After 2 hours, about 60 browsers of clients are introduced into
the system. This benchmark simulates the eDesigners case study over the course
of a few years. Several employees and external consultants will have worked on
the template using different browsers on their devices (desktop, laptop, tablet).
In the meantime, they might have cleared their browser cache, used an incognito
session, or switched to a new device. This scenario is used to verify how well the
5 frameworks will perform over time.

All other technologies used in the evaluation use some form of client identifiers
and version numbers to keep track of changes (e.g., vector clocks in Legion).
This means that the size of the data set will grow over time, especially in highly
dynamic settings like the web. Figure 2.9 shows the total data size on the server
over time while several users are joining and leaving. The size of the data

2.5

5

0

7.5 MB
Data size

10 2hours
Timeline of the test

ShareDB Yjs Automerge Legion OWebSync

Figure 2.9: Evolution of the total data size on the server.
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set on the server remains constant over time when using OWebSync. Other
techniques grow with the number of clients and operations. In the dynamic
setting of the web, keeping track of all clients with version vectors and client
identifiers will eventually inflate and pollute the metadata. Users can clear the
browser cache, browse incognito or visit the web application on multiple devices
including someone else’s device for one time. By storing those client identifiers in
the data model on the server, the performance will decrease over time. Yjs is an
exception and stops growing fast in size after a few minutes. This is because Yjs
will garbage collect old operations after 100 seconds15. This operation is not safe
and clients that were offline for a longer time might end up in an inconsistent
state or lose data.

Notice that the replicas in this experiment are only moving objects around, i.e.,
they modify existing data. If they would also remove objects, then OWebSync
would have a small increase in data size over time, as tombstones need to be
kept. However, even for removing large subtrees, only a single tombstone will be
stored.

The first two benchmarks are performed on a clean data set, i.e., the size of the
data on the server is still small. If we would start the tests after, e.g., 5 hours of
warm-up, the results for the other technologies would be worse. We evaluated a
worst-case scenario for OWebSync, with clean data sets for the other frameworks.

2.5.4 Summary

Our evaluation shows that the operation-based approaches work well in
continuous online situations with a limited number of users. Operational
Transformation cannot be used with many clients as the server eventually
becomes a bottleneck. Operation-based approaches can synchronize updates
faster than state-based approaches like Legion and OWebSync. However,
when network disruptions occur, these technologies cannot achieve acceptable
performance and need tens of seconds to achieve synchronization. Delta-state
CRDTs, as used in Legion, can recover faster from network disruptions than
operation-based approaches, but still need more than 8 seconds to synchronize
missed updates, which cannot be called interactive anymore. Moreover, the size
of the data set will increase with both the number of updates and the number of
clients. OWebSync can achieve much better performance in the order of seconds,
which is still acceptable for interactive groupware. In a setting with frequent
offline situations, e.g., for mobile employees, OWebSync is the most appropriate
technology and outperforms all other frameworks. Over time, OWebSync can
continue to deliver the same interactive performance, as no client identifiers
or version vectors are stored. Table 2.1 summarizes the results in seconds of

15https://github.com/y-js/yjs

https://github.com/y-js/yjs
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Table 2.1: Synchronization time and CPU usage for 24 clients and 1000 objects.

Synchronization time [s] CPU [%]
online offline client server

50% 99% 50% 99%
ShareDB 4.45 7.69 12.67 25.10 10 101
Yjs 0.14 0.17 20.21 109.15 20 10
Automerge 0.14 0.20 11.59 18.90 22 54
Legion 0.64 1.03 7.61 8.56 9 5
OWebSync 1.34 1.49 2.87 3.53 9 33

the large-scale test with 24 clients and 1000 objects for the average user (50th
percentile) and most of the users (99th percentile) for both settings.

2.6 Related work

The related work consists of three types of work: 1) concepts and techniques such
as CRDTs and OT, 2) NoSQL data systems such as Dynamo and Cassandra, as
well as synchronization frameworks between data centers, and 3) synchronization
frameworks for replication to the client.

Concepts and techniques. The concepts and techniques like OT and CRDTs were
discussed in Section 2.2. Other text-based versioning systems such as Git16 are
not made to manage data structures and do not always guarantee valid data
structures after synchronization. Code, XML, or JSON can end up malformed
and often require user-level resolution.

We now discuss some other extensions to CRDTs. Conflict-free Partially
Replicated Data Types [Bri+15] allows to replicate only part of a CRDT. This
helps with bandwidth and memory consumption, as well as security and
privacy [KKB19]. OWebSync allows replicating any arbitrary sub-tree of the
whole CRDT tree. Hybrid approaches combining operation-based and state-
based CRDTs are also possible as demonstrated by Bendy [BBR16]. For data
that can tolerate staleness, one can make use of state-based CRDTs, while for
data with interactive performance requirements, operation-based CRDTs can
be used. This dynamic decision is only made between the servers, and not on
the clients. For clients, only operation-based CRDTs are available. A garbage
collection technique can be used to reduce the memory usage of operation-based
CRDTs by defining a join-protocol for dynamic environments [BG19]. But this
only treats transient network disruptions where clients will come back online

16https://git-scm.com/

https://git-scm.com/
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eventually, which is not necessarily the case for web clients. Pure operation-
based CRDTs [BAS17] only have to send the actual operations, rather than
datatype-specific messages generated internally. This works well for commutative
CRDTs, but non-commutative ones require the use of their Tagged Causal Stable
Broadcast middleware, consisting of a partially ordered log.

There exist other Replicated Date Types as well. Strong Eventually Consistent
Replicated Objects (SECROs) [De +19] are similar to operation-based CRDTs
but do not impose restrictions on the commutativity of operations. However, by
doing so, they need a global total order and cannot quickly recover from network
disruptions. Upon reconnection, it may be the algorithm has to compute all
possible orderings to choose one, leading to high latencies and poor scalability.
Explicitly Consistent Replicated Objects (ECROs) [De +21] avoid this problem
of computing the orderings at run-time but have a static analysis phase before.
However, they only guarantee Explicit Consistency [Bal+18] instead of SEC.
Cloud Types [Bur+12] are similar to CRDTs and can be composed, but only offers
eventual consistency. Mergeable Replicated Data Types [Kak+19] uses invertible
relational specifications defined by the programmer to derive a three-way merge
function. They are only defined for data types built as views of relations on sets.

Distributed data systems and NoSQL systems. Based on the Amazon Dynamo
paper [DeC+07], many other open-source NoSQL systems have been developed
for structured or semi-structured data, focusing on eventual consistency within
or between data centers. Dynamo uses multi-value registers to maintain
multiple versions of the data and expects application-level conflict resolution.
Cassandra17 [LM10] supports fine-grained versioning of cells in a wide-column
store. It uses wall-clock timestamps for each row-column cell and adopts a last-
write-wins strategy to merge two cells. CouchDB18 and MongoDB19 focus on
semi-structured document storage, typically in a JSON format. CouchDB offers
only coarse-grained versioning per document and stores multiple versions of the
document. Applications need to resolve version conflicts manually. It also does
not support fine-grained conflict detection within two documents.

Several commercial database systems allow to use CRDTs as the underlying data
model: e.g., Riak20, Akka21 and Redis [Biy17]. Besides those commercial products,
several research projects have emerged. Merkle Search Trees (MSF) [AT19]
implement a key-value store like Dynamo using a state-based CRDT and a
Merkle-tree. It builds the Merkle-tree on top of the flat data structure, while
OWebSync will make use of the tree-like structure of the data to build the Merkle-

17https://cassandra.apache.org
18https://couchdb.apache.org
19https://www.mongodb.com/
20https://docs.riak.com/riak/kv/
21https://doc.akka.io/docs/akka/current/distributed-data.html

https://cassandra.apache.org
https://couchdb.apache.org
https://www.mongodb.com/
https://docs.riak.com/riak/kv/
https://doc.akka.io/docs/akka/current/distributed-data.html
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tree. MSF is targeted to asynchronous background synchronization between
backend servers, and not for interactive groupware with replication to the
clients. Antidote22 is a research project to develop a geo-replicated database over
worldwide data centers. It adopts operation-based commutative CRDTs for highly-
available transactions and supports partial replication but assumes continuous
online connections as the default operational situation for clients. SMAC [EEB16]
uses an operation-based CRDT storage system for state management tasks for
distributed container deployments. DottedDB [Gon+17] uses node-wide dot-based
clocks to find changes that need to be replicated, without the need for explicit
tombstones. It does not support replication to the clients, or offline edits.

Client-tier frameworks for synchronization. Many client-side frameworks have
appeared to enable synchronization between native clients. Cimbiosys [Ram+09]
is an application platform that supports content-based partial replication and
synchronization with arbitrary peers. While it shares some of the goals of
OWebSync, it is best suited to synchronize collections of media data (e.g., pictures,
movies) and not for JSON documents with fine-grained conflict resolution.
SwiftCloud [Zaw+13; Pre+14; Zaw+15] is a distributed object database with
fast reads and writes using a causally-consistent client-side local cache and
operation-based CRDTs. Metadata used for causality in the form of vector clocks
is assigned by the data centers. Hence, the size of the metadata is bound by
the number of data centers, and not by the number of updates or the number
of clients. The cache is limited in size and the data is only partially available,
limiting what data can be read and updated during offline operation. Because it
uses operation-based CRDTs, it needs a reliable exactly-once message channel,
which is implemented by using a log.

Besides these frameworks for native clients, there are several JavaScript
frameworks made for synchronization between distributed web clients. Le-
gion23 [Lin+17] is a framework for extending web applications with peer-to-
peer interactions. It also supports client-server usage and uses delta-state-
based CRDTs for synchronization. Automerge24 [KB18] is a JavaScript library
for data synchronization adopting the operation-based JSON data type of
Kleppmann [KB17]. It uses vector clocks which grow in size with the number
of clients. PouchDB25 is a client-side JavaScript library that can replicate data
from and to a CouchDB server. Local data copies are stored in the browser
for offline usage. PouchDB only supports conflict detection and resolution at
the coarse-grained level of a whole document. ShareDB26 is a client-server

22https://syncfree.github.io/antidote
23https://github.com/albertlinde/Legion
24https://github.com/automerge/automerge
25https://pouchdb.com
26https://github.com/share/sharedb

https://syncfree.github.io/antidote
https://github.com/albertlinde/Legion
https://github.com/automerge/automerge
https://pouchdb.com
https://github.com/share/sharedb


50 CHAPTER 2 • EVENTUAL CONSISTENCY IN A TRUSTED SETTING

framework to synchronize JSON documents and adopts OT as a synchronization
technique between the different local copies. ShareDB can thus not be used in
extended offline situations. In case of short network disruptions, it can store
the operations on the data in memory and resend them when the connection
is restored. The offline operations are lost when the browser session is closed.
Yjs27 [Nic+15; Nic+16] is a JavaScript framework for synchronizing structured
data and supports maps, arrays, XML, and text documents. All data types also
use operation-based CRDTs for synchronization. Swarm.js28 is a JavaScript
client library for the Swarm database, based on operation-based CRDTs with a
partially ordered log for synchronization after offline situations. Swarm.js also
focuses on peer-to-peer architectures like chat applications and decentralized
CDNs, while OWebSync focuses on client-server line-of-business applications. In
contrast with OWebSync, none of these JavaScript frameworks support all of
the following: fine-grained conflict resolution, interactive updates when online,
and fast resynchronization after being offline, as well as being scalable to tens of
concurrently online clients and hundreds of writers over time.

2.7 Conclusion

This chapter presented a web middleware that supports seamless synchronization
of both online and offline clients that are concurrently editing a shared data set.
Our OWebSync middleware implements a generic data model, based on JSON,
that combines state-based CRDTs with Merkle-trees. This allows us to quickly
find differences in the data set and synchronize them to other clients. Apart
from the regular CRDT structure and the hashes of the Merkle-tree, no other
metadata needs to be stored. Existing approaches use client identifiers and
version numbers, or even the full history, to track updates, which will pollute the
metadata and decrease performance over time.

The comparative evaluation shows that the operation-based approaches cannot
achieve acceptable performance in case of network disruptions and need tens
of seconds to achieve resynchronization. Current state-based approaches using
delta-state-based CRDTs are faster to recover than the operation-based ones, but
cannot achieve prompt resynchronization of missed updates. The state-based
approach with Merkle-trees of OWebSync can achieve better performance in the
order of seconds for both online updates and missed offline updates, making it
suitable for interactive web applications and groupware.

27https://github.com/y-js/yjs
28https://github.com/gritzko/swarm

https://github.com/y-js/yjs
https://github.com/gritzko/swarm
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In this chapter, we present BeauForT, a purely browser-based platform for
decentralized BFT consensus in client-centric, community-driven applications.
Existing consensus protocols using either all-to-all communication or leader-
based gossip suffer from performance degradation in unstable network conditions.
We propose a novel, optimistic, leaderless, gossip-based consensus protocol,
tolerating Byzantine replicas, combined with a robust and efficient state-based
synchronization protocol. This protocol makes BeauForT well suited for the
decentralized client-centric web and its dynamic nature with many network
disruptions or node failures.

This chapter is strongly based on our published journal article in IEEE
Transactions on Parallel and Distributed Systems in 2023 [Jan+23a]. A parallel
work [Cas+21b] also studied whether a leaderless gossip protocol can be used for
consensus. In a follow-up work, we have extended the consensus framework with
a generic state-machine based language to implement smart-contracts on top of
an earlier version of BeauForT [Sau+21b].

© 2023 IEEE. Reprinted, with permission, from Kristof Jannes, Emad Heydari Beni, Bert Lagaisse, and Wouter
Joosen. “BeauForT: Robust Byzantine Fault Tolerance for Client-centric Mobile Web Applications”. In: IEEE
Transactions on Parallel and Distributed Systems 34.4 (2023), pp. 1241–1252. DOI: 10.1109/TPDS.2023.3241963.

https://doi.org/10.1109/TPDS.2023.3241963
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3.1 Introduction

Browsers and client-side web technologies offer increasing capabilities to enable
fully client-side web applications that can operate independently and in a
stand-alone fashion, in contrast to the server-centric model [Gar+15; JLJ19a].
Mobile applications are also more and more purely web-based clients, where
the execution environment is just a browser-based process for a mobile web
application. Web 3.0 can be defined as the decentralized web where users
are in control of their data, and that replaces centralized intermediaries
with decentralized networks and platforms. Community-driven, decentralized
networks can open the road to many use cases for the sharing economy [Mad+19]
or shared loyalty programs for local communities [JLJ19b]. Such client-centric
collaborations can, for example, enable a small network of merchants in a local
shopping street, or at a farmer’s market to set up a shared loyalty program
between the merchants in an ad-hoc fashion. These small-scale, specialized
collaborative networks can empower motivated citizens to bring value to their
local community, without involving an incumbent big-tech company that can
change the rules unilaterally at any moment.

However, current state-of-the-art peer-to-peer data synchronization frameworks
for the browser such as Legion [Lin+17], Automerge [KB17; KB18; Kle+22], and
OWebSync [JLJ21] focus on full replication and eventual consistency between
trusted clients. Each replica can modify all data, and all modifications are
automatically replicated to all replicas. These protocols lack Byzantine Fault
Tolerance (BFT). Yet, they are easy to set up and applications from trusted parties
can leverage these to synchronize and modify a shared data set between them.

Decentralized interactions between distrusting parties can be enabled by using a
classical BFT consensus protocol such as PBFT [CL99], BFT-SMART [BSA14],
or HotStuff [Yin+19]. These classical BFT protocols are very fast and have a
high throughput, but typically assume server-to-server communication with low-
latency network connections, and assume every node is connected to all other
nodes. Other classical BFT consensus protocols, such as Tendermint [BKM18],
relax the requirement that every node is connected to every other node. Nakamoto
consensus [Nak08], used in several blockchains such as Bitcoin, relaxes this
requirement and only requires a loosely coupled network. However, blockchains
based on Nakamoto consensus are too slow for many use cases. They need
minutes, or even an hour, to confirm a transaction with high probability. Moreover,
they consume a large amount of energy and need a lot of processing power.
Ethereum [But+13] started as a blockchain using Nakamoto consensus but
recently moved to Proof-of-Stake with Gasper [But+20] as consensus protocol.
Its finality is still expected to be around 15 minutes. At last, Avalanche
consensus [Roc+19] tries to solve the scalability problem by using the concept of
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meta-stability. Only a small subset of replicas needs to be sampled in each round
to reach consensus. However, a replica still needs a connection to every other
replica, as the replicas that they need to sample change continuously.

Ultimately, a decentralized mobile application should be able to run in a robust
and resilient way over a network of online client devices such as smartphones.
We target an environment with 10-100 lightweight and mobile web clients.
Such devices have a permanent yet unstable internet connection over a data
subscription and are operational and reactive most of the time. I.e., we assume
those mobile devices always have a 3G or 4G connection, but this kind of
connection is less stable than a wired connection and short disruptions are
commonplace. Many existing protocols such as PBFT [CL99], RBFT [AMQ13],
BFT-SMART [BSA14], DBFT [Cra+18], HotStuff [Yin+19], or SBFT [Gue+19]
use all-to-all communication, which is simply not possible in a web-based
environment. A browser can keep a connection open to 10-20 other browsers,
but after that performance deteriorates quickly. Alternatively, there exist gossip-
based protocols, such as Tendermint [BKM18], that do not require a connection to
every other node. However, Tendermint is leader-based, which in practice means
that when this leader fails, consensus will be delayed until the next leader is
elected (this can take 10 seconds). Moreover, these existing BFT protocols are
designed for server-like infrastructure that has lots of processing power, storage
space, and a stable, low-latency network connection. The motivated citizens
in our envisioned use cases do not have this kind of knowledge, budget, and
infrastructure available to set up a private network of servers, that are running
a BFT protocol between them. These citizens rather want to use their existing
hardware such as a low-end computer, or a mobile device.

In this chapter, we present BeauForT, a novel peer-to-peer data synchronization
framework for decentralized web applications between mistrusting parties.
BeauForT combines the efficient operation and lightweight setup of a peer-to-peer
data synchronization framework with the resilience and fault tolerance of a BFT
consensus protocol. The novel BFT protocol, optimized for unstable network
conditions with higher latencies, does not require that all replicas are directly
connected to each other. It also does not rely on a leader, removing the need for a
costly leader election procedure when this leader is malicious or loses its network
connection temporarily. The latter scenario is common in our target environment.
Each browser replica only maintains the current authenticated state and does not
need to keep track of an operation log or transaction history, keeping the storage
footprint small. To further reduce the storage and bandwidth requirements, we
use an aggregate signature scheme called BLS [BLS01]. This also reduces the
computational requirements, as you can verify multiple signatures at once. The
authenticated state and consensus votes are replicated over multiple hops using
a gossip protocol.
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BeauForT combines the following contributions in a browser-based middleware:

1. Lightweight, leaderless, client-centric Byzantine fault tolerant consensus,
over values constrained by an application-level callback.

2. Resilient and robust, state-based synchronization of both the data and the
votes for the consensus protocol using state-based CRDTs and Merkle-trees.

3. Delayed verification and aggregation of signatures using the BLS scheme.

Our evaluation, using our application use case of a shared loyalty program
between small-scale merchants, shows that BeauForT is a practical solution
for these kinds of community-driven use cases. BeauForT achieves transaction
finality in the order of seconds, even in networks with 100 browser clients.
Compared to other state-of-art BFT consensus protocols, our protocol is more
robust against unstable network conditions.

This chapter is structured as follows. Section 3.2 presents a motivational use case.
Section 3.3 presents BeauForT’s lightweight BFT consensus protocol and the
state-based replication strategy. The detailed web-based middleware architecture
of BeauForT is elaborated in Section 3.4. Our evaluation in Section 3.5 focuses
on many aspects of performance in both the optimistic scenario as well as more
realistic and even Byzantine scenarios. Section 3.6 elaborates on important
related work. We conclude in Section 3.7.

3.2 Motivation

We first describe an initial use case that would benefit from the lightweight,
robust consensus offered by BeauForT. The use case involves business transac-
tions happening in real life and needs interactive performance and robustness,
rather than high throughput or scalability. We then formulate our vision on
decentralized web applications.

Loyalty programs. Integrated loyalty programs can be more effective than
traditional loyalty programs that are limited to a single company [FT16]. Think
about airlines that award miles which can be redeemed with several partners.
Such collaborations usually introduce an extra trusted intermediary and add
more layers of management and operational logistics. This trusted party can
charge high transaction costs to be part of the integrated network. For small
merchants on a farmer’s market or in a local shopping street, this operational
overhead is too much of a burden. A decentralized peer-to-peer network can
enable fast and secure creation, redemption, and exchange of loyalty points
across different merchants. For the purpose of this chapter, we assume a fixed
membership, i.e., an initial group of merchants come together and decide to run
this protocol. They have a list of all public keys of all the merchants. If later a
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new merchant wants to be part of the network, or an existing member wants to
leave, they will have to stop the protocol (i.e., in the evening after the stores are
closed) and update the list of public keys.

Vision. We envision that communities will be able to use BeauForT as a platform
to explore new applications and use cases that were previously not feasible.
While our initial proof-of-concept implementation is targeting the browser, the
techniques explained in this chapter can be easily ported toward native mobile
and lightweight desktop applications. BeauForT does not need any complex
infrastructure, and it currently provides a simple JavaScript-based API, which
allows many developers to start developing decentralized applications. Those
decentralized applications can be made open source, which allows many people to
verify and vouch for them. Local communities who want to set up a decentralized
application between the local participants can use such an application and do
not need to concern themselves with a complex infrastructure setup to run the
application. Nor do they need to rely on a general-purpose third-party network,
such as a public blockchain.

3.3 BeauForT protocol

This section explains the state-based consensus protocol used in BeauForT. First,
it describes the adversary model and its properties. Then it explains the protocol
specification. At last, we prove the safety and liveness properties of the protocol.

3.3.1 System model

We assume a partially synchronous network [DLS88]. Messages can be delayed,
dropped, or delivered out of order. An adversary might corrupt up to f replicas of
the n ≥ 3 f +1 total replicas. They can deviate from the protocol in any arbitrary
way. Such replicas are called Byzantine, while the replicas that are strictly
following the protocol are called honest. At least 2 f +1 honest replicas should
be able to make a connection to each other. In practice, they are transitively
connected to each other, but only directly connected to a few replicas. The
topology can change over time. If no progress is being made on a new proposal,
replicas will close some existing connections and connect to a few different
replicas. Each replica will gossip its neighbors to every replica it connects to. We
assume attackers are computationally bounded and it is infeasible to forge the
used asymmetric signatures or find collisions for the used cryptographic hash
functions.

We address in this chapter a replicated key-value store for which replicas
coordinate agreement using a Byzantine Fault Tolerant consensus protocol, such
that the following classical properties hold [CGR11]:
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• Termination: Every correct replica eventually decides some value.

• Validity: If all replicas are correct and propose the same value v, then no
correct replica decides a value different from v; furthermore, if all replicas
are correct and some replica decides v, then v was proposed by some replica.

• Agreement: No two correct replicas decide differently.

• Integrity: No correct replica decides twice.

All writes to a key-value pair are atomic, meaning that only a single state
transition can happen at any time. Extra application-level conditions can be
applied to limit who can write to it, and which values are acceptable given the
previous value. BeauForT does not use a leader to coordinate the protocol,
removing a common single-point-of-failure compared to many existing BFT
protocols. In such leader-based protocols, the failure of a leader leads to a
long delay before consensus can be reached. This is even the case for rotating
leader protocols such as HotStuff [Dan+22]. The set of replicas is fixed, and
changes to the replica set have to be made outside the protocol, e.g., by halting
the protocol, updating the set of replicas on all replicas, and starting the protocol
again. Consensus is reached for each key-value pair separately, which means
that each key has its own instance of the BeauForT protocol.

3.3.2 Protocol specification

The specification of the protocol is shown in Algorithm 4 and 5. The state consists
of three parts. The first part is the current value (line 2) and a quorum certificate
(line 3). The quorum certificate contains signatures of a supermajority of n− f
replicas and proves the validity of the value. The second part is a map, which
maps rounds to a collection of votes for the next value (line 5). In each round,
there can be multiple proposed values. The third part consists of a new proposed
value (line 6) and a partial quorum certificate for that value (line 7). Consensus
is reached in two steps, first, a supermajority needs to be reached in the last
round of the votes, then a supermajority needs to be reached for the next quorum
certificate. The first step will establish a resilient quorum, while the second step
will guarantee that sufficiently many replicas know that such a quorum has been
achieved. The flow of the protocol is shown in Figure 3.1.

Proposing new values. To write a new value, a replica has to propose a new
value to the other replicas. This process is the PREPARE phase in Algorithm 4. The
proposing replica adds the new value and its vote to round 0 of votes (line 10).
As the protocol is leaderless, any replica can be a proposing replica and multiple
replicas can propose a new value simultaneously. Replicas are only allowed to
vote once in each round for each view, so if the replica already voted for another
value, it will have to wait until consensus is reached for the current view and
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Algorithm 4 Basic protocol for replica id.

1: n, f ▷ Total number of replicas, Maximum number of Byzantine replicas
2: value ←⊥ ▷ Current accepted value
3: qc ←⊥ ▷ Quorum certificate for value
4: for v ← 1,2,3, ... do ▷ view
5: votes ←; ▷ round 7→ votesInRound
6: value′ ←⊥ ▷ Next value
7: qc′ ←; ▷ Next quorum certificate

▷ PREPARE phase
8: as a proposing replica:
9: wait for value val from client

10: votes[0]← {VOTE(v,0,val,PRE-COMMIT)}
11: as a non-proposing replica:
12: wait for any value in votes
13: for r ← 0,1,2,3, ... do ▷ round

▷ PRE-COMMIT phase
14: if ¬HASVOTED(votes[r]) then
15: val ← WINNINGVALUE(votes[0])
16: vote ← VOTE(v, r,val,PRE-COMMIT)
17: votes[r]← votes[r]∪ {vote}
18: wait for (n− f ) votes in votes[r]
19: val ← WINNINGVALUE(votes[r])
20: valV otes ← VOTESFORVALUE(votes[r],val)
21: if LEN(valV otes)≥ (n− f ) then
22: vote ← VOTE(v, r,val,COMMIT)
23: value′ ← val
24: qc′ ← qc′∪ {vote}
25: else
26: val ← WINNINGVALUE(votes[0])
27: vote ← VOTE(v, r+1,val,PRE-COMMIT)
28: votes[r+1]← {vote}∪votes[r+1]
29: continue

▷ COMMIT phase
30: wait for (n− f ) votes in qc′:
31: if LEN(votes)−1> r then
32: value′ ←⊥
33: qc′ ←;
34: continue
35: value ← value′
36: qc ← qc′
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PREPARE
wait for client or pre-commit vote

client submission observe pre-commit vote

Vote for new
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PRE-COMMIT
wait for n− f pre-commit votes

else
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COMMIT
wait for n− f commit votes

observe new round

n− f votes for winning value v

Commit v

Figure 3.1: State transition diagram of the BeauForT consensus protocol.

Algorithm 5 Basic protocol for replica id. (continued)

37: function WINNINGVALUE(votesInRound)
38: return argmaxvalue LEN({v ∈ votesInRound : v.value = value})
39: function VOTESFORVALUE(votesInRound, value)
40: return {v ∈ votesInRound : v.val = value}
41: function HASVOTED(votesInRound)
42: return ∃ v ∈ votesInRound : v.id = id
43: function VOTE(view, round, val, type)
44: return (val, id, SIGN(view, round,val, type, id))

propose the new value in the next view. The non-proposing replicas will receive
the new proposal(s) via the gossip protocol, and also enter into the next phase.

Consensus. Consensus about which value will be accepted in a view is reached
in two phases, called PRE-COMMIT and COMMIT in Algorithm 4. Honest replicas will
always vote for the value with the most votes in round 0 (line 14-17). If multiple
values have the same number of votes, the lexicographic order of the hash of those
values is taken as a tiebreaker. If a round has reached a supermajority of votes
for a single value, then no new round can be started anymore, and the replicas
will start creating a new quorum certificate (line 21-24). If a supermajority of the
replicas have voted in a round, but not a single value reaches a supermajority,
a new round is started (line 25-29) and all replicas can vote again in this new
round. The replicas are only allowed to vote on the current winner in round 0
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according to their local state (line 14-17). Because each replica might have a
different state on the current set of votes in round 0, there can still be multiple
values in the next round without any supermajority for a single value.

Another factor is Byzantine nodes trying to halt the system by voting not
according to the rules. However, the set of possible values to vote on gets smaller
with every round, and eventually, the view of all the honest replicas on the
votes in round 0 will become the same, and the winning value can be chosen
unanimously. The reason for this is that a replica does not simply send a message
with his vote to the others, but instead gossips the entire state. This includes
all votes for the previous rounds. This means that when two replicas disagree
with each other in a certain round, once they communicate with each other,
they will learn each other’s state. In the next round, they will both vote for the
same value (as their local state of votes[0] will be the same). Malicious replicas
can try to shift the balance to violate liveness, but with each round, they have
less possibility to do so. Because when they gossip votes[i] they also gossip the
previous rounds which should show why they voted on a certain value. If a replica
detects that another replica is Byzantine, it will exclude this Byzantine replica
permanently, and its votes do not count anymore.

Once a replica enters the COMMIT phase, it will wait for n− f replicas to also
confirm that the proposed value can be committed (line 30). A malicious replica
can trick an honest replica to enter this phase without the support of enough
honest replicas. For this reason, during this waiting period, if the replica observes
that other replicas started a new round, it will realize its mistake and remove
the partial commit certificate and go back to the PRE-COMMIT phase (line 31-34).
The malicious replica can also be detected, as there will be two signatures of him
signing two votes for two different values in the same round.

If n− f replicas agree and add their vote to the quorum certificate for the next
value, the value will be accepted and the quorum certificate will be stored to later
convince other replicas that the value is indeed correct (line 36).

Correctness. The integrity and validity properties are trivially satisfied. We
can now reformulate the agreement and termination properties more precisely
as a safety and liveness property. We prove these properties in Section 3.3.3.

Theorem 1. Let ℜ be a cluster of n replicas with f Byzantine replicas and
n ≥ 3 f +1. BeauForT’s correctness is defined by the following two properties:

• Safety: If replicas R1,R2 ∈ℜ are able to construct quorum certificates qc1
for value value1 and qc2 for value value2 at view v, then value1 = value2.

• Liveness: If an honest replica R ∈ℜ proposes a new value value1 at view
v, eventually a replica will be able to construct a quorum certificate qc for
some value at view v.
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State-based replication protocol. During all phases in the algorithm, the state
is continuously broadcasted to the other replicas. The full state, including all
votes in the consensus protocol, is replicated by using a state-based gossip protocol.
A major feature of gossip-based communication is its reliability [Cas+21b]. Each
time a new state is received, the local state is merged with the remote state.
This protocol synchronizes data peer-to-peer using state-based Conflict-free
Replicated Data Types (CRDTs) [Sha+11a] combined with a Merkle-tree [Mer88]
to efficiently replicate the updated state, similar to OWebSync [JLJ21]. All
key-value pairs are put inside a Merkle-tree. Each key-value pair is a separate
instance of the consensus protocol in Algorithm 4. The Merkle tree is used to
efficiently replicate the state between any two replicas. A replica will first send
its own root hash to another replica. If those hashes are equal, that replica
knows that both replicas have the same state, and the gossip protocol ends. If
however the hashes are not equal, that replica will descend in the Merkle-tree
and send all hashes in the next level of the tree to the first replica. This process
continues until a specific key-value pair is reached, and then the full state of
the consensus protocol in Algorithm 4 is sent (value, qc, v, votes, value′, and
qc′). The state of the protocol can be represented as a CRDT: votes and qc′ are
Grow-only Sets [Sha+11a], and a state associated with a higher view number
overwrites any older state, much similar to a LWWRegister [Sha+11a]. There
are two extra constraints imposed on the CRDTs due to the Byzantine nature.
First, signatures have to be correct, no replica may accept any invalid signature,
if a replica does send a wrong signature, it can be considered Byzantine, and the
other replicas will drop their connection to it. Secondly, not all states are valid.
For example, votes keeps track of the different rounds, but no new round can be
started unless n− f votes in the previous round are present, and no consensus
has been reached yet. When a replica receives an invalid state, it will be ignored,
and the other replica can be considered Byzantine. If those n− f votes are all for
the same next value, then no new round is started. These constraints, signatures,
and invalid states, are verified before the CRDTs are merged.

By using a state-based approach, rather than the operation-based approach
of operation-based CRDTs [Sha+11a], blockchains [Nak08], or traditional BFT
protocols, we only need to store the current state together with some metadata.
There is no need to store the full log of all operations to later convince replicas
that were temporarily offline of the new state. Replicas also do not need to
keep track of the state of other replicas, or which messages are already received
by which replica. If a new value and quorum certificate with a higher view
are received, then the protocol will accept the new state, and the protocol will
reset back to line 3 of Algorithm 4 with that newer view. Note that we do
not explicitly show the gossiping in Algorithm 4 to keep the algorithm compact.
During the whole protocol, the state is continuously gossiped between the replicas.
This way, votes or qc′ will eventually contain enough votes to continue in the
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protocol specification. The state-based replication also helps with the consensus
protocol. Instead of only sending proposals and decisions to other replicas, the
full state of votes and qc′ is sent. This approach allows replicas to hold each
other accountable when they cast their vote. Their votes should support why
they voted for a specific value, otherwise, they will be considered Byzantine and
excluded from the network.

Examples. An example of this replication process is shown in Figure 3.2. There
are four non-Byzantine replicas with an empty set of votes and empty qc′ at
t0. The scenario starts at t1 with replica A proposing a new value v (line 10
of Algorithm 4). The state is replicated to the other replicas randomly. In the
example, the state is gossiped to replicas B and C at t2, and those replicas merge
the received state with their local state. Since B and C did not yet vote in this
view and round, they will cast their vote for the current winning value (line
14-17). This process continues at t3 when replica B sends its state to replicas
A and C. At t3, replica C observes that a supermajority of the replicas support
value v, and it starts working on a new quorum certificate to determine if at least
a supermajority of the replicas also knows about this (line 21-24).

A second example of this replication process is shown in Figure 3.3. Imagine now
the same four non-Byzantine replicas. Replica A again proposes a new value
v1, but concurrently replica B proposes another value v2. If we use the same
gossiping path as in Figure 3.2, then at t2 replicas B and C receive the vote
from replica A. Replica B will not vote anymore, because it already voted for
its own value v2. At t3, replica B gossips its state to replica A and C. Replica
A will now have one vote v1 (his own) and one vote for v2 (from B). Replica C
however will now have two votes for v1 (from A and C) and one vote for v2 (from
B). Since replica C now has n− f = 3 votes in round 0, but there are only two votes
for the winning value, it will start a new round and vote for the winning value
in votes[0], which is v1. B will now also vote for v1 in votes[1] and a commit
certificate can be created after round 1.

A third and last example of this replication process is shown in Figure 3.4.
Imagine that replica D also receives the votes from A and B between t1 and t2. If
the vote from B comes in first, then D will also vote for v2 and start a new round
with a vote for v2 (as this is the winning value in its opinion). So after t3 we now
have replica C in round 1 with v1 and replica D in round 1 with v2. The other
replicas A and B are still in round 0 until they receive more votes. If, for example,
replica C now gossips its state to D, all votes in round 0 will become known, and
all replicas will deterministically vote for the same value v2 in the next round (if
we assume the hash of v2 is larger then the hash of v1).

Since replicas will vote for the first value they observe, a well-placed replica that
can send its request to enough other replicas first can prevent requests from other
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replicas from ever being accepted. This does satisfy the liveness constraint that
was specified formally in Section 3.3.2: in which we specify that when new values
are proposed, some value should be eventually accepted. The protocol does not
provide deterministic fairness, i.e., no guarantees are made for a single proposed
value. In practice, we have two arguments in favor of our model. First, when a
replica notices that no progress is being made on a proposal, it will close some
connections randomly and open new connections to other replicas. This makes
it much harder for such a well-placed replica to be well-placed for a long time.
Second, our use case of loyalty points across small-scale merchants prevents any
problems because only the client (customer) can sign a message to spend loyalty
points at a certain merchant. In this case, only a single proposal will ever be
present if the client is honest, and it will always be eventually accepted by the
network.

Delaying signature verification. For brevity, we did not show the actual
verification of signatures in Algorithm 4. However, in the basic protocol, each
time a new signature is received, it needs to be verified. This can become quite
costly, and therefore BeauForT will use a fast path and delay the verification of
any incoming signatures. BeauForT will just accept and replicate them, until a
decision needs to be made, such as starting a new round or starting to create a
new proposed quorum certificate. Only then, all signatures will be verified in one
batch. If all signatures are valid, the protocol can continue as normal. If there
are invalid signatures, then those will be removed and BeauForT will continue to
collect more signatures and verify them on arrival. This hybrid approach enables
very fast consensus when all replicas are honest, while gracefully degrading to
a slower, more costly protocol that can detect which replicas are actively acting
Byzantine.

3.3.3 Safety and liveness proofs

Safety

Theorem 2 (Safety). Let ℜ be a cluster of n replicas with f Byzantine nodes and
with n > 3 f . If replicas R1,R2 ∈ℜ are able to construct quorum certificates qc1
for value value1 and qc2 for value value2 at view v, then value1 = value2.

We will first prove this for the simplified case when both quorum certificates
belong to the same round (Lemma 1), and we will then prove that once a quorum
certificate can be constructed, no more rounds can be started (Lemma 2).

Lemma 1. If replicas R1,R2 ∈ ℜ are able to construct quorum certificates qc1
and qc2 for value value1 and value2 respectively with qc1 view = qc2 view and
qc1 round = qc2 round , then value1 = value2.



3.3 BEAUFORT PROTOCOL 69

Proof. Assume two different replicas R1 and R2 have constructed a quorum
certificate qc1 and qc2 for value value1 and value2 respectively with qc1 view =
qc2 view and qc1 round = qc2 round . They are constructed in the same round, so
of the n possible votes, at least n− f replicas have voted on value1, and at least
n− f replicas have voted on value2. Honest replicas will never vote twice in the
same view and round. Therefore, at least n−2 f honest replicas have voted on
value1 and n−2 f different honest replicas have voted on value2. In total, we
have (n−2 f )+(n−2 f )+ f ≡ 2n−3 f replicas that have voted. We defined n ≥ 3 f +1
before, which gives f ≤ 1

3 n− 1
3 . If we replace f in the first equation, this gives

2n−3 f ≥ 2n−3( 1
3 n− 1

3 )= n+1. This is a contradiction, there need to be at least
n+1 replicas to construct two such certificates for different values, however, we
only have n replicas. So the two values value1 and value2 have to be equal.

Lemma 2. If replicas R1,R2 ∈ ℜ are able to construct quorum certificates qc1
and qc2 for value value1 and value2 respectively with qc1 view = qc2 view, then
qc1 round = qc2 round .

Proof. Assume two different replicas R1 and R2 have constructed a quorum
certificate qc1 and qc2 for value value1 and value2 respectively with qc1 view =
qc2 view and qc1 round < qc2 round . Since qc1 is accepted, at least n− f replicas
vote on the proposed quorum certificate, and at least n− f replicas voted on
value1 in round qc1 round . The fact that n− f replicas voted on the proposed
quorum certificate means that at least n−2 f honest replicas observed n− f votes
for value1. Of those votes, at least n−2 f are coming from honest replicas. The
only way to now construct a quorum certificate qc2 for value2 is to start a new
round. To start a new round, a replica needs to not have voted for the proposed
quorum certificate qc1, and observe a different winning value value2. Yet, at
least n−2 f honest replicas observed that at least n−2 f honest replicas think
that value1 is the winning value. This leaves only 2 f replicas who can prefer
another value value2. By definition, we have n ≥ 3 f +1. This means that in the
worst case, f +1 honest replicas observe f +1 honest replicas thinking value1 is
the winning value, together with f Byzantine replicas. Value value2 has only 2 f
supporting replicas, which is not enough to start a proposed quorum certificate.
So, at least one replica currently supporting value1 needs to switch votes in a
future round. However, once a replica has voted for a proposed quorum certificate,
it will not change its opinion unless it is convinced that a new valid round is
started. So once n−2 f honest replicas are locked on a value, by voting on a
proposed quorum certificate, it is impossible to start a valid new round.

Liveness. When a new value is proposed, eventually the protocol will end and a
valid quorum certificate is created for a new value. This value is not necessarily
the first proposed value, and it is not even guaranteed that a specific value ever
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gets committed as long as other values continue to be proposed. Safety is always
chosen over liveness. When there are not enough honest replicas online to reach
a supermajority, no consensus can be reached and the protocol will simply block
and wait for more votes. However, all those replicas do not need to be online at
the same time, since the state is replicated to all available replicas over time, and
votes can be verified by all replicas in the end.

Theorem 3 (Liveness). Let ℜ be a cluster of n replicas with f Byzantine nodes
and with n > 3 f . If an honest replica R ∈ ℜ proposes a new value at view v,
eventually a replica will be able to construct a quorum certificate qc for some
value at view v.

We will first proof two simplified lemmas (Lemma 3 and Lemma 4) which we will
use in the proof for Theorem 3 which is equal to Lemma 5.

Lemma 3. If only a single replica R ∈ℜ proposes a new value value1, eventually
a replica will be able to construct a valid quorum certificate qc.

Proof. As there is only a single proposed value, all honest replicas who observe
this will cast their vote for that value. Eventually, an honest replica will observe
n− f votes for value1 and that replica can start creating a new proposed quorum
certificate qc′. Eventually, n− f votes will be cast to this proposed quorum
certificate qc′, and a valid quorum certificate qc is constructed, and value is
committed.

Lemma 4. If x replicas R1..x ∈ ℜ propose values value1..x, and no Byzantine
replicas vote twice in the same round, eventually a replica will be able to construct
a valid quorum certificate qc.

Proof. Either a single value reaches a quorum, in which case the previous lemma
holds. Or a split vote occurs and a new round will be started after n− f votes
are observed. All replicas will base their vote for this new round on the winning
value that they observed from round 0. At least n− f votes are known, and only f
votes are still unknown. “Known” means known to the one replica that is making
some decision and going ahead in the protocol. But to make progress, at least
n− f replicas need to know about n− f votes. These votes that are known, are
not necessarily the same for all n− f replicas, but eventually, all honest replicas
will know about the exact same votes. As long as not all votes are known to all
voting replicas, the winning value might change. In each new round, either all
unknown votes stay unknown, or one becomes known. In the former case, then
the currently known votes will all be the same, and a proposed quorum certificate
can be started. In the latter case, one extra vote is known, which might again
result in the system ending up in a split vote, and a new round will be started.
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However, this last case can only happen at most f times. After f +1 rounds, all
replicas will have voted in round 0, every replica will observe the same winning
value, and a quorum certificate can be created.

Lemma 5. If x replicas R1..x ∈ℜ propose values value1..x, eventually a replica
will be able to construct a valid quorum certificate qc.

Proof. If no Byzantine replicas vote twice in the same round, or only a single
value is proposed, the previous two lemmas hold. If a split vote occurs, a new
round will be started after n− f votes are observed. f of those votes might
belong to Byzantine replicas who can vote for multiple values. As a new round
is only started after n− f votes, a least n−2 f honest votes are observed. No
Byzantine replica can send conflicting votes to any of those n−2 f honest replicas,
as otherwise those replicas will detect this conflicting vote and exclude the
Byzantine replica. With exclusion we only mean that their votes are not counted
anymore on each honest replica that observed that a Byzantine replica voted
twice. So it is even possible that some replicas exclude the Byzantine replica,
while other replicas are still trusting it. However, as all votes will be gossiped,
eventually all honest replicas will know about the Byzantine replica. Safety will
not be violated because n (in the formula n− f ) stays the same. But to reach this
threshold, the votes from Byzantine replicas are ignored. If another Byzantine
replica sends conflicting votes, then after at most f times, all Byzantine replicas
are excluded and the previous lemma holds. Moreover, no Byzantine replica
can continue to vote on values that are not the winning value. Each replica is
only allowed to vote on the winning value or any other value that has at least
support from f +1 replicas in the previous round. All honest replicas converge to
a single value, even with Byzantine replicas supporting other values. Because
the protocol only looks to round 0 to determine the winning value. In the rounds
after that, the f Byzantine replicas can support a different value, but if they do,
they will be excluded as f < f +1. This means that after at most 2 f +1 rounds, a
proposed quorum certificate can be started, which will be committed.

3.4 Architecture and implementation

This section describes the client-centric architecture, deployment, and imple-
mentation of BeauForT. This middleware architecture is key to supporting the
BFT consensus and synchronization protocol described in the previous section.
BeauForT is fully web-based and written in JavaScript and can execute in any
recent browser without any plugins. This section first describes the overall
architecture. Then it explains our use of aggregate signatures using BLS to
reduce the size of the data.
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3.4.1 Overall architecture

The BeauForT middleware architecture consists of five main components
(Figure 3.5): (i) a public interface that offers an API for developers, (ii) a peer-
to-peer network component to communicate directly with other browsers, (iii) a
consensus component to handle the consensus protocol described in the previous
section, (iv) a membership component to handle all cryptographic operations,
and (v) a store component to save all state to persistent storage. The last three
components run on a different browser thread by using Web Workers.

(i) Public interface. This component provides an API to application developers to
use this middleware. It provides four functions to modify the application state.
GET(key) returns the current value at the given key. SET(key, value)
submits a proposal to update the value at the given key. DELETE(key) submits
a proposal to delete the value at the given key. A tombstone is kept for correct
replication. LISTEN(key, callback) supports reactive programming by
calling the callback with the new value each time a new value for the key is
confirmed by the network.

Apart from those functions, the middleware also provides a constructor function to
initialize the middleware by passing the following four configuration parameters:
the list of all members of the network together with their public key, the private
key of the replica, the URL to the signaling server to set up the peer-to-peer
connections, and a callback to verify state changes and restrict valid values. This
callback is called before voting for a new proposed value, with both the old and
new values as arguments. It should return a boolean whether to allow this
change or not. This callback enables the implementation of basic access control
policies on the values. One example is to embed the public key of the owner into
the value and require each new value to be signed by the owner. This value can
only be changed by the owner and supports passing ownership by changing the
embedded public key.

(ii) Peer-to-peer network. The P2P Network component manages the peer-to-peer
network and is responsible for the replication of the state-based CRDTs. Many
browser-based replicas are connected to each other using WebRTC (Web Real-
Time Communications). WebRTC enables a browser to communicate peer-to-peer.
However, to set up those peer-to-peer connections, WebRTC needs a signaling
server to exchange several control messages. Once the connection is set up,
all communication can happen peer-to-peer, without a central server. Another
WebRTC peer-connection can also be used as a signaling layer, so once a replica is
connected to another one, it can also connect to all of its peers, without the need
for a central signaling server. In our adversary model, this server is assumed to be
trusted. If this signaling server would be malicious, the safety of the system is not
endangered as no actual data is sent to this central server. However, some peers
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might not be able to join the network and the required supermajority might not
be reached, which violates liveness. The use of multiple independent signaling
servers can lower the risk of this happening. At startup, every replica will connect
to some other replicas randomly. In our implementation, a connection will be
made to at least seven other replicas. This number is arbitrary but performed
best in our experimental evaluation. A higher number will increase resource
usage, and decrease the potential to batch multiple updated states together.
A lower number will increase the number of hops, and therefore increase the
latency. To defend against an eclipse attack, where few Byzantine neighbors try
to surround an honest replica to break liveness, a replica can periodically create
new connections to other peers and drop older connections when no updates are
being gossiped to them, or when proposals are not being voted on. This is similar
to how Bitcoin works [Nak08].

(iii) Consensus. The Consensus component handles the consensus protocol
described in Section 3.3. It maintains a Merkle-tree of all key-value pairs and uses
the state-based CRDT framework OWebSync [JLJ21] to replicate the local state to
other replicas using the P2P Network component. The Merkle-tree is constructed
using the Blake31 cryptographic hash function. For performance reasons, the
hash function is implemented in Rust and compiled into WebAssembly.

(iv) Membership. The Membership component contains all cryptographic material
and is responsible for all cryptographic operations such as signing and verification
of signatures. We use an aggregate signature scheme called BLS [BLS01],
more specifically BLS12-381. Section 3.4.2 provides more details about the
BLS implementation. It is implemented in C and compiled into WebAssembly.

(v) Store. At last, the Store component saves all state to the IndexedDB database.
IndexedDB is a key-value datastore built inside the browser. Each value and
the Merkle-tree are serialized to bytes and stored there under the respective key.
This enables users to close the browser and continue afterward without losing
the current state.

3.4.2 Aggregate signatures using BLS

The consensus protocol in Section 3.3 is resource-intensive with respect
to aggregation and verification of digital signatures. Signatures must be
continuously collected and verified. This means, in every intermediate state of a
transaction, each party needs to keep track of all incoming signatures and verify
them to prevent malicious scenarios. Persistence, management, and transmission
of these signatures are costly, especially in a browser-based setting. Therefore,

1As a research prototype, we opted for a newer hashing algorithm with fewer rounds [Aum19]. For
production usage, a standardized hashing algorithm such as SHA-256 or SHA3-256 is more suitable.
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G0 and G1 are two multiplicitive cyclic groups of prime order q. H0 : {0,1}∗ →G0
and H1 : {0,1}∗ →Zq are hash functions viewed as random oracles.
1. Parameters Generation: PGen(κ) sets up a bilinear group

(q,G0,G1,Gt, e, g0, g1) as described by [BDN18]. e is an efficient non-
degenerating bilinear map e : G0 ×G1 → Gt. g0 and g1 are generators of
the groups G0 and G1. It outputs params ← (q,G0,G1,Gt, e, g0, g1).

2. Key Generation: KGen(params) is a probabilistic algorithm that takes as
input the security params, generates sk $←−Zq, computes and sets pk ← gsk

1 ,
and outputs (sk, pk).

3. Signing: Sign(sk,m) is a deterministic algorithm that takes as input a secret
key sk and a message m. It computes t ←H1(pk), and outputs σ←H0(m)sk·t ∈
G0.

4. Key Aggregation: KAgg({(pki, r i)}n
i=1) is a deterministic algorithm that takes

as input a set of public key pk and the multiplicity r pairs. It computes
ti ←H1(pki), and outputs apk ←∏n

i=1 pkti ·r i
i .

5. (Multi-)Signature Aggregation: Agg(σ1, ...,σn) is a deterministic algorithm
that takes as input n signatures. It outputs σ←∏n

i=1σi.
6. Verification: Ver(apk,m,σ) is a deterministic algorithm that takes as input

aggregated public keys apk ∈G1, and the related message m and signature
σ ∈G0. It outputs e(g1,σ) ?= e(apk,H0(m)).

Figure 3.6: Formal specification of the optimized BLS signature scheme.

our protocol requires short and compact signatures to reduce storage and network
footprint. Boneh–Lynn–Shacham (BLS) [BLS01] presented a signature scheme
based on bilinear pairing on elliptic curves. The size of a signature produced
by BLS is compact since a signature is an element of an elliptic curve group.
The aggregation algorithm [Bon+03] outputs a single aggregate signature as
short and compact as the individual signatures, unlike other approaches that
rely on ECDSA, DSA, or Schnorr. The subgroups have a prime order of 255 bits
and BLS12-381 offers a security level close to 128 bits. Other state-of-the-art
BFT systems such as SBFT [Gue+19] and HotStuff [Yin+19] also use aggregate
or threshold signatures. However, they use it in a different way. They let the
leader compute the aggregate signature. BeauForT uses a different approach,
once a proposed quorum certificate has reached a supermajority of the votes, any
replica can aggregate these into one single aggregated BLS signature. BeauForT
makes a trade-off between performance, bandwidth, and storage space. Verifying
a single signature is expensive, however, aggregation is cheap in performance.
For this reason, BeauForT will delay the verification of the signatures until the
latest possible moment (as explained in Section 3.3.2). Only then the individual
signatures are aggregated and verified. If the verification fails, a binary search
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can be conducted to find the invalid signatures and remove them. This leads to a
higher bandwidth usage, compared to always aggregating two shares immediately.
But allows for cheaper recovery when a Byzantine replica is sending invalid
signatures. Once a signature is aggregated and verified, the individual shares
are discarded, saving both bandwidth and storage space.

The standard scheme is vulnerable to rogue public key attacks. The state-of-
the-art approach [BDN18] to mitigate such attacks is to compute (t1, ..., tn) ←
H1(pk1, ..., pkn) for each Agg invocation and compute σ←∏n

i=1σ
ti
i , where pki is

the public key of replica i, H1 is a hash function, and σi is a signature produced
by replica i. Although the ti values can be cached, the computation of σ would
be costly. Moreover, Agg does not take as input the same set of public keys
at different states of a transaction in our consensus protocol. Therefore, we
distribute the computations by moving the calculations of the ti and σ

ti
i values to

the signing parties, and as a result, these computations are performed only once.
Now, any replica can run Agg by only computing σ1...σn. The security properties
of BLS remain intact [BDN18], and we obtain more efficient aggregations at
scale. We provide the mathematical background and formal specification of the
optimized BLS scheme in Figure 3.6.

3.5 Evaluation

We validated the BeauForT middleware with the loyalty points use case presented
in Section 3.2. The first subsection presents this validation. Next, we present
three different benchmarks with different scales. The first benchmark shows
the performance results in the optimistic scenario without network failures or
Byzantine failures. The second benchmark evaluates the performance in a more
realistic scenario with some network failures. The last benchmark evaluates the
performance in the presence of a Byzantine replica.

3.5.1 Validation in the loyalty points use case

The deployment of the loyalty points use case consists of three services: a web
application running in a browser for each merchant, a web server to serve the
static web application files, and a signaling server to set up WebRTC peer-to-
peer connections between the browsers. The web server is optional. Every
merchant can also store those application files themselves and load them from
their local file system. The signaling server is a trusted component. However,
if trust is not present, you can set up multiple signaling servers to reduce
potential misbehavior. No actual data is sent to the signaling server. It is
only used to discover other peers on the network. To have a baseline, we compare
BeauForT to two other existing state-of-the-art systems for BFT consensus: BFT-
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SMART [BSA14; SBV18] and Tendermint [BKM18; Cas+21a]. BFT-SMART is a
more traditional BFT protocol, similar to PBFT, where all replicas are connected
to each other, and one leader drives the protocol. If that leader fails, a new one
will have to be elected before any progress can be made. Tendermint uses gossip
for communication between the replicas. There is still a leader, however, that
leader changes frequently.

3.5.2 Test setup

To test the performance of BeauForT, we implemented the use case and deployed
it on the Azure public cloud. We used 21 VMs (Azure F8s v2 with 8 vCPUs and 16
GB of RAM) with one VM acting as a central server running the web server and
signaling server. The other VMs are running Chrome browsers inside a Docker
container. Each of those VMs holds one to five browser instances for different
scales of the benchmarks. To simulate a truly mobile environment, the network
is delayed to an average latency of 60 milliseconds using the Linux tc tool, which
simulates the latency of a 4G network. Every test is executed 10 times to ensure
the results are reliable. In every run, the network configuration will be different,
because replicas will connect to each other randomly to form the gossip network.

We are interested in the time it takes to confirm a transaction, experienced
by the browser that submitted the transaction. Each transaction is a group of
loyalty points being changed from owner. For example, a merchant gives some
loyalty points to a customer or a customer redeems their loyalty points with a
merchant. In the evaluation, the browser clients will do one transaction per
second. This throughput is more than enough for the local community-scale
use cases we envision. We compare the latency and network bandwidth with a
different number of browsers. We show a boxplot of the latency results instead of
only the average, as all users should experience fast confirmation times, and not
only the average user.

3.5.3 Optimistic scenario

In the optimistic scenario, every replica is honest and no replicas fail, so the
fast path can be used. One single aggregate signature is verified only before a
decision, avoiding costly signature verifications after every message. As every
replica is honest, this aggregate signature is correct and the new value can be
accepted by all replicas.

Figure 3.7 shows the latency for the different technologies. For the use case
of loyalty points, transactions must be confirmed fast, as people are waiting at
checkout to receive or redeem loyalty points. BeauForT can confirm transactions
within 4 seconds, even with a network of one hundred browsers. BFT-SMART
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Figure 3.7: Latency in the optimistic scenario without failures.

can confirm transactions within half a second. This is because all replicas
communicate directly with each other. However, having all replicas directly
connected to each other is not realistic in a mobile peer-to-peer network. In
contrast, BeauForT and Tendermint use gossip and need multiple hops before all
replicas are reached. This also causes the increased latency. Furthermore, BFT-
SMART uses HMAC to authenticate requests, which are an order of magnitude
faster than the asymmetric signatures used in BeauForT and Tendermint. We
can see a similar pattern in the bandwidth requirements shown in Figure 3.8.
In the large-scale scenario with 100 browsers, BeauForT uses less than 3 Mbit/s,
which is acceptable for a typical mobile network.

3.5.4 Realistic scenario

The same benchmark is now repeated with 25% of the replicas failing during the
benchmark. A failure is simulated by dropping all network packets to and from
that replica. Replicas fail one by one, with a 5-second delay between each failure.
As all systems are Byzantine fault tolerant, they should be able to tolerate up to
33% of the replicas failing or acting Byzantine.
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Figure 3.8: Network usage in the optimistic scenario without failures.
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Figure 3.9: Latency in the realistic scenario with network failures. For BeauForT
we included an extra scenario with a Byzantine replica trying to halt the network.

Figure 3.9 shows the latency in this scenario. BeauForT is not impacted much
by the failing replicas and can still confirm transactions within 5 seconds. The
impact on Tendermint is also small, but the tail latency is doubled to about 10
seconds. BFT-SMART however needs to use a costly leader election protocol
when the current leader fails. This process takes some time, during which no
transaction can be committed. Once a leader is chosen, the same fast performance
can be achieved again. This behavior is clearly visible in Figure 3.9. The median
latency of BFT-SMART is not affected by the failures. However, the tail latency
increases to 27 seconds for the scenario with 80 replicas. It cannot handle the
case with 100 replicas. BFT-SMART is unable to handle large network sizes
when the latency between the nodes is higher than usual, e.g., in geo-distributed
systems or mobile networks. This has been shown before [BNT20]. Tendermint
does have a leader, but it is rotated round-robin all the time. This makes the
failure of a leader less severe, as a new one will quickly be elected anyway.

3.5.5 Byzantine scenario

For BeauForT, we performed an extra benchmark with a Byzantine replica. As
long as the honest replicas are still using the fast path, the Byzantine replica
will send extra invalid signatures. As the signatures are only verified when a
supermajority is reached, the honest replicas only realize this at the end, and they
cannot find out which replica is Byzantine. Once the fast path is disabled, the
signatures are verified for every message, so malicious replicas can be detected
and excluded from the network. In this case, the Byzantine replica keeps the
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signature intact to avoid being detected. However, it will try to slow down the
consensus by not voting itself.

The latency in this Byzantine scenario is shown in Figure 3.9. BeauForT can
handle Byzantine replicas very well for smaller networks, however, for networks
of size 100 replicas, the tail latency becomes 7 seconds. Which might already
be quite high for the use case of loyalty points. This is mostly due to the cost to
verify more BLS signatures. We did not test the effect of Byzantine replicas for
BFT-SMART or Tendermint. As they do not use a fast path when everyone is
honest, the impact is less. However, if the current elected leader happens to be
Byzantine, it can delay the consensus until some timers end and a new leader is
elected [AMQ13].

3.5.6 Discussion and conclusions

We have shown that BeauForT can be used for the loyalty points use case with
up to 100 different merchants, even when some of them are acting maliciously.
BeauForT can achieve similar latencies as other gossip-based BFT protocols, such
as Tendermint. Our evaluation also shows the trade-offs that BeauForT makes.
In an optimal scenario where there is a good connection available between all
replicas and no network disruptions or crashes happen, then a classical leader-
based protocol such as BFT-SMART will outperform BeauForT. However, as we
mention in the introduction, we envision a more ad-hoc network between low-end
devices on a residential or even a mobile network, where short-term disruptions
are common. Our evaluation shows that BeauForT is very robust against this
kind of setting and achieves similar performance as in the optimal scenario: a
transaction is always finalized within 5 seconds. A leader-based protocol such as
BFT-SMART is not well suited. The temporary failure of a leader leads to long
commit times and even total failure for larger network sizes. This leader also
needs more resources and a direct connection to every other replica. Keeping 100
WebRTC connections open in a browser, while theoretically possible, drastically
reduces performance. However, BeauForT does not impose this, since consensus
can be reached gradually over time, as the full state of the proposals and votes
propagates through the network. BeauForT can confirm transactions fast, in the
order of seconds, without needing a complex back-end setup or wasting a lot of
energy. BeauForT has a small storage footprint due to its state-based nature.

3.6 Related work

Several client-side frameworks for data synchronization between web ap-
plications exist: Legion [Lin+17], Yjs [Nic+15], Automerge [KB18], and
OWebSync [JLJ21]. They make use of various kinds of Conflict-free Replicated
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Data Types (CRDTs) [Sha+11a] to deal with concurrent conflicting operations
and can synchronize data peer-to-peer. They are easy to set up and only require
a browser and a peer-to-peer discovery service. However, they assume trusted
operation as the default setting. Some work has been done in a semi-trusted
setting [LLP20; Bar+21]. Recent work [Kle22; JLJ22b] also looked into making
CRDTs Byzantine fault-tolerant in the eventual consistency model. BeauForT
provides strong consistency.

Permissioned blockchains such as Hyperledger Fabric [And+18] have closed
membership and often use a BFT consensus protocol to order transactions. For
example BFT-SMART in HyperLedger Fabric [BSA14; SBV18]. The first known
BFT protocol is Practical Byzantine Fault Tolerance (PBFT) [CL99]. Other
protocols bring improvements to the original PBFT protocol. Zyzzyva [Kot+07]
uses speculative execution which improves latency and throughput if there
are no Byzantine replicas. However, its performance drops significantly if this
premise does not hold. 700BFT [Aub+15] provides an abstraction for these
BFT algorithms. These protocols are targeting a small number of replicas
in a local network. They generally work in two phases: the first guarantees
proposal uniqueness, and the second guarantees that a new leader can convince
replicas to vote for a safe proposal. HotStuff [Yin+19] proposed a three-phase
protocol to reduce complexity and simplify leader replacement. This makes
HotStuff more scalable. All these algorithms use a leader to drive the protocol.
When the leader is malicious, the performance can degrade quickly [AMQ13].
GeoBFT [Gup+20] is a topology-aware, decentralized consensus protocol, designed
for geo-distributed scalability. AWARE [Ber+19] is a variant of BFT-SMART that
dynamically changes the voting power of a replica depending on its latency over
time, decreasing the consensus latency. BeauForT gives every replica equal
voting power. In future work, BeauForT could be extended to associate a weight
to each vote. While we believe this would be especially beneficial for our target
environment with mobile and unreliable clients, special care will have to be given
to ensure safety will stay intact. BeauForT does not use a leader and replicas
communicate only to a subset of the other replicas using a gossip-like protocol.

WebBFT [BR18b] shares a similar vision of client-centric, decentralized web
applications. However, they only interface to a backend BFT-SMART cluster,
instead of running the BFT protocol directly between browsers. Similarly, earlier
work [Mos+12] extended the Web Services Atomic Transactions specification to
include BFT. However, also here the protocol is running between the backend
servers, rather than between the actual web clients.

Tendermint [BKM18; Cas+21a], used in Cosmos, uses Proof-of-Stake (PoS), where
voting power is based on the amount of cryptocurrency owned by each replica.
Because block times are short, in the order of seconds, there is a limited number
of validators Tendermint can have because finality needs to be reached for each
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block. It is also not resistant to cartel forming, which allows those with a lot of
cryptocurrencies to work together to control the network.

Instead of reaching consensus between all of the replicas of the network,
Stellar [Maz15] and Ripple [SYB+14] reach federated Byzantine agreement
between a subset of the replicas which act as representatives.

Other protocols use a randomized approach. Ouroboros [Kia+17], HoneyBad-
ger [Mil+16], Dumbo [Guo+20] and BEAT [DRZ18] use distributed coin flipping
for consensus. HoneyBadger [Mil+16] uses threshold encryption [Sho00] for cen-
sorship resilience. Algorand [Gil+17] uses Verifiable Random Functions [MVR99]
to select a random committee for the next round. Avalanche [Roc18; Roc+19] uses
meta-stability to reach consensus by sampling other replicas without any leader.
While Avalanche is lightweight and scalable, it needs to be able to sample all
other validators directly. The number of connections one can open in a browser
without performance loss is limited. BeauForT supports propagation of votes
over multiple hops.

Several BFT consensus protocols use a leaderless approach. Although most
deterministic BFT consensus protocols designate a special leader, there exist
deterministic protocols that are fully leader-free [BS10]. However, the algorithm
only terminates in f +3 rounds in the best case, even without failures. [Ant+21]
provides a leaderless algorithm that is optimal, and also provides a fast path in
good conditions. It assumes replicas can directly broadcast to every other honest
replica. A hybrid approach is also possible, DBFT [Cra+18] uses a so-called
weak-coordinator which is not required to reach consensus, but can speed up
consensus when this weak coordinator is honest. Messages are broadcasted to
every other replica. Our protocol only maintains the state of the protocol, and
state-changes are gossiped by dynamically computing a diff using the Merkle-
tree. This naturally allows to batch multiple votes and state changes in a single
network request.

There are several proposals to improve the performance and response time
of BFT consensus. StreamChain [ISV18] reaches consensus over a stream of
transactions instead of blocks. FabricCRDT [NMJ19] uses CRDTs to support
concurrent transactions to occur in the same block, using the built-in conflict
resolution of CRDTs to resolve the conflict automatically. Other approaches
also borrow from CRDTs: PnyxDB [BNT20] supports commuting transactions
to be applied out-of-order. A novel design for gossip in Fabric [Ber+20] improves
the block propagation latency and bandwidth. Other approaches dynamically
adapt the number of faults the system can withstand in reaction to threat level
changes [Sil+21]. While these improvements make BFT faster, none of them try
to reduce the infrastructure requirements to be able to easily set up an untrusted
peer-to-peer network.
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Open or permissionless blockchains such as Bitcoin [Nak08] allow everyone to
participate and use Proof-of-Work (PoW) to reach agreement over the ledger.
However, PoW has several flaws [BR18a]. PoW uses a lot of processing power and
energy [OM14] and performs poorly in terms of latency. It assumes a synchronous
network to guarantee safety and achieve finality. When this assumption is
violated, temporary forks can happen in the blockchain as liveness is chosen over
safety. Therefore, PoW blockchains do not offer consensus finality, instead one
needs to wait for several consecutive blocks to be probabilistically certain that a
transaction cannot be reverted. Simplified Payment Verification mode [Nak08]
for clients can reduce the resource usage at the cost of increased centralization.

ByzCoin [Kok+16] uses PoW for a separate identity chain to guard against Sybil
attacks but uses a BFT protocol to order transactions. ByzCoin makes use of
collective signatures (CoSi) [Syt+16] and a balanced tree for the communication
flow. CoSi makes use of aggregate signatures by constructing a Schnorr multi-
signature. However, CoSi needs multiple communication round-trips to generate
the multi-signature and assumes a synchronous network.

Lightning Network or state channels for Bitcoin [Lin+19] or Ethereum [Mil+19;
McC+20] are off-chain protocols that run on top of a blockchain. A new state
channel between known participants is created by interacting with the blockchain.
After its creation, participants can use this channel to execute state transitions
by collectively signing the new state. These transactions do not involve the
blockchain and have fast confirmation times and no transaction costs. However,
state channels assume all participants to be always online and honest. If this
is violated, the underlying blockchain needs to be used to resolve the conflict,
or a trusted third party can be used [McC+19]. BeauForT uses a similar state-
transitioning protocol where only the latest collectively agreed state needs to
be stored. However, BeauForT can tolerate both failing and malicious replicas,
without resorting to a blockchain or a trusted third party.

Another approach is to use a trusted hardware component [Ver+13; Kap+12;
DCK16; Zha+17; BDK17; Liu+18]. These are faster and less computationally
intensive but require specialized hardware to be present. Moreover, trusted
execution environments have been broken in the past [Lip+18; Koc+19].

3.7 Conclusion

In this chapter, we presented BeauForT. A browser-based middleware for
decentralized, community-driven web applications. BeauForT uses a client-
centric, leaderless BFT consensus protocol, combined with a robust and efficient
state-based synchronization protocol. BeauForT uses an optimized BLS scheme
for efficient computation and storage of signatures. It supports a client-centric,
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browser-based, state-based, permissioned datastore with a low infrastructure
and storage footprint for small-scale, citizen-driven networks. Compared to other
state-of-the-art protocols, BeauForT offers consistent and robust confirmation
times to achieve finality of transactions in the order of seconds, even in failure
settings and Byzantine environments. In optimal environments, with no crashes
or Byzantine failure, a leader-based protocol confirms transactions faster than
BeauForT. In contrast to traditional blockchains, BeauForT does not store a
transaction log or blockchain, keeping the overall storage footprint small.
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Traditional Conflict-free Replicated Data Types (CRDTs) assume that all replicas
are trusted, which is not necessarily the case in a peer-to-peer system. In this
chapter, we present a protocol for secure state-based CRDTs which provide
fine-grained confidentiality and integrity by using encryption per field in every
(sub)-document. Our protocol guarantees Strong Eventual Consistency despite
any Byzantine replicas. It provides a fine-grained, dynamic membership and key
management system, without violating Strong Eventual Consistency or losing
concurrent updates. Our evaluation shows that the protocol is suitable for use in
interactive, collaborative applications.

This chapter is strongly based on our published workshop paper in Proceedings
of the 3rd International Workshop on Distributed Infrastructure for the Common
Good in 2022 [JLJ22b]. This contribution is a step forward towards decentralized,
peer-to-peer deployments of collaborative web applications. Chapter 2 ignores
the fact that not every peer or server will be trusted. Chapter 3 pushes the
limit of browser-based applications by running a decentralized BFT consensus
protocol between them but keeping client devices continuously online to ensure
continuous operation might be difficult in practice. This chapter revisits the
eventual consistency of Chapter 2, without making assumptions about the
honesty and trustworthiness of the different peers.
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4.1 Introduction

In the last decade, personal data has been stored in the cloud, rather than on a
local computer. From many perspectives, this is beneficial for end-users. Data is
accessible everywhere and collaboration with anyone in the world is made easy.
Users also do not need to worry about data loss due to malfunction, or security
breaches. However, the reality today often does not match this ideal. Few large
tech companies and governments have access to vast amounts of data. They can
potentially misuse it and invade the privacy of their customers or citizens to gain
more money or harm political dissidents. Moving to another vendor is often very
hard, if not impossible. The data is also not secure, as we hear about new security
breaches almost every month, and most breaches probably even go undetected.

One solution is to move to a decentralized and client-centric approach [Kle+19;
JLJ19a]. The primary copy of the data is stored under the control of the user
on their local device. Data can then be replicated peer-to-peer to all other user
devices and collaborators. However, a true peer-to-peer approach of end-user
devices is not very durable and available. Devices are often not online at the
same time, do not have a large amount of storage space, and can fail more easily
or more frequently compared to a server inside a data center.

Having some kind of centralized server can be beneficial to aid the client-centric
vision. The server is most of the time online, and all clients can use this
server to replicate their data to each other. Even when they are never online
simultaneously. Ideally, this server does not belong to a big-tech company but is
under the control of the end user.

One such approach is the Solid Platform [Man+16]. With Solid, every person
manages their own Personal Online Datastore (pod), either self-hosted or hosted
with a third party pod-provider. Each application will store all user data inside
the user’s pod, and the user is in control to decide who has access to it. This
also makes it easy to switch to a different application. However, the majority
of the users will not choose to host their pod themselves. Instead, they will
rely on a third-party company or the government to provide them with a pod.
This might lead to an even bigger problem of surveillance capitalism, where few
companies provide pods to their customers and gain immediately access to even
more data. These providers with all data of a large number of users will also be
an interesting target for hackers.

The solution we propose is a hybrid approach of a peer-to-peer network of mostly
client devices and some centralized servers to improve availability and durability.
An example is shown in Figure 4.1. While we trust the centralized server to keep
data available, we do not want them to read or modify the actual data. A similar
durability can be reached by creating a larger peer-to-peer network with friends
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or family and replicating all data between all these devices. However, it should
be avoided that peers are able to look into all personal data of other peers. A
secure replication protocol without having access to the plain data is required.

In such systems, eventual consistency is the most pragmatic and only viable
option. As devices are often offline, reaching a global consensus to have strong
consistency would be nearly impossible or beyond a user-friendly time window.
With strong consistency, making updates on an offline device would be impossible,
and latency will be bad as clients are often only connected via WiFi or a mobile
network. By opting for eventual consistency, we need a way to make sure
all replicas converge to the same state after they have received all operations.
One option is to use Conflict-free Replicated Data Types (CRDTs) [Sha+11a].
CRDTs are data structures that guarantee eventual consistency without explicit
coordination. However, classical CRDTs do not encrypt their data and are not
resilient against an attacker trying to prevent convergence.

In this chapter, we present a secure state-based CRDT protocol that extends
classical state-based CRDTs with:

• Fine-grained encryption per field in every (sub)-document, to preserve
confidentiality and integrity of all user data,

• Byzantine Fault Tolerance, to guarantee Strong Eventual Consistency even
with Byzantine parties,

• Dynamic membership and fine-grained key management, without breaking
Strong Eventual Consistency, leaking extra data, or losing updates.

Compared to other state-of-the-art approaches for secure CRDTs [Bar+21; Kle22],
we provide the first framework to allow both concurrent data updates, as well as

Figure 4.1: Hybrid architecture of a peer-to-peer network with a centralized
server. Some users have one device, others have multiple. Some devices have
access to the server, others connect peer-to-peer. Some devices can be malicious.
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concurrent updates to the access control policy. This means that a user can share
a document, or revoke access to a document, without losing concurrent updates
to that document.

Being able to change the encryption key to give or revoke access, or to rotate
the encryption key when it might be compromised is especially important for
collaborative applications. For a single user, that user can easily coordinate
a key rotation by bringing all his devices together, halting the system, and
updating the key. However, for collaborative applications with several users, this
process should be done online, without halting the system or explicit coordination
between all collaborators. The protocol presented in this chapter supports this.

This chapter is structured as follows. Section 4.2 describes the system- and
adversary model. We explain our protocol for secure CRDTs in Section 4.3. We
evaluate our protocol in Section 4.4. Section 4.5 presents related work. We
conclude in Section 4.6.

4.2 System model

In this chapter, we consider a peer-to-peer network of replicas connected by an
asynchronous network (Figure 4.1). Replicas do not have a direct connection
to every other replica, and they do not necessarily know the full set of replicas.
Messages can be delayed, dropped, or delivered out of order, but eventually,
some messages will be received. Honest replicas will follow the protocol exactly,
Byzantine replicas can behave arbitrarily. There is no limit on the number of
Byzantine replicas. Data is structured as a JSON document (tree) and every
node has an owner, who is responsible for deciding who has access to it. Every
user has an asymmetric key-pair, and other users are able to retrieve the public
key of other users in a secure way, outside our protocol. We assume attackers
are computationally bounded and it is infeasible to reverse the used symmetric
encryption without the secret, forge the used asymmetric signatures or find
collisions for the used cryptographic hash functions.

Given this system model, our protocol provides the following properties in the
face of an active adversary:

• Confidentiality: Only users who have access can read the content.

• Integrity: Only users who have access can edit the content.

• Attributability: Each edit is attributable to the user who made the
modification.

• Availability: As long as at least two honest replicas are available, they can
work together and replicate correctly between each other.
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• Eventual delivery: An update delivered at some correct replica is eventually
delivered to all correct replicas.

• Strong convergence: Correct replicas that have delivered the same updates
have equivalent states.

• Termination: All method executions terminate.

The last three properties together deliver Strong Eventual Consistency [Sha+11a].
All the properties are kept intact, even when the adversary has been given access
to the actual content. The adversary is then able to arbitrarily change the content,
in a way that might not make sense for the application or end-user. However, all
replicas will still converge to the same end-state, and the bad updates will be
attributable to the Byzantine user. The owner can then decide to revoke access.

4.3 Secure CRDTs

This section explains the protocol for our secure CRDTs. We use the term key
to refer to a key from a key-value pair. When we are referring to cryptographic
keys, we will always specify this as a secret key (k) for symmetric encryption and
as a private key (sk) or public key (pk) for asymmetric encryption or signatures.

4.3.1 Encrypted CRDT

We now present two encrypted CRDT protocols. These two data structures are
enough to encode a JSON tree with only maps and values into a CRDT. Arrays
are not yet supported. Figure 4.2a shows an example of a JSON document and
Figure 4.2b shows how it will be represented internally by the protocol.

State-based CRDTs have a merge-function, which takes as input two states of
the same CRDT and produces a new state. Mathematically, these states form a
join semi-lattice, and the resulting state of the merge function is the smallest
state that is larger or equal to the two input states according to the partial order
of the lattice. To replicate this data structure, a replica needs to send its state to
another replica. This receiving replica can use the merge function with its local
state and the received state to end up with the merged state.

Each CRDT is associated with an asymmetric key-pair. The public key is included
in the CRDT and also functions as unique ID to reference the CRDT. The private
key is only shared with users who have read-write access to the data.

LWWRegister. A LWWRegister [Sha+11a] is a data structure that holds one
single value. When updating the value, the new value is associated with the
current timestamp. Conflicts are resolved by selecting the value associated
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{
"name": "John Doe"

}

(a) JSON data

ORMap:
id: pk1 (0x12)
observed:
- key: Enck1 ("name")
timestamp: t1
σsk1
pka
σa

removed: ;
σsk′1
pka
σa

LWWRegister:
id: pk2 (0x1a)
value: Enck2 ("John Doe")
timestamp: t2
σsk2
pka
σa

(b) CRDTs

Hroot

1: H12

2: H1 a: H2

(c) Trie

sk1 ←RND()
pk1 ← sk1 ×G
k1 ←H(sk1)
sk2 ←HKDFsk1 ("name", t1)
pk2 ← sk2 ×G
k2 ←H(sk2)

(d) Key derivations

Figure 4.2: Example of how a JSON data structure can be translated into a
secure CRDT data structure, consisting of two CRDTs. These CRDTs are put
inside the Modified Merkle-Patricia Trie. At the bottom, we show how keys can
be derived starting from one root key: sk1.
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with the highest timestamp. If the timestamps are equal, the value with the
lexicographically largest hash value will be selected. Since the actual value is
not used to perform a merge, the value can be encrypted using any symmetric
encryption protocol, and the resulting data structure is still a CRDT.

ORMap. An ORMap [Sha+11a] is a data structure that holds a mapping of keys
to values. In practice, it consists of two sets: the observed-set and the removed-
set. When a new key-value pair is added to the ORMap, it is associated with a
unique ID and added to the observed-set. When removing the key-value pair,
it is added to the removed set. The key-value pairs included in the ORMap are
all pairs included in the observed-set, which are not present in the removed-set.
Thanks to the unique ID, it is possible to remove an item and add it again
later. In our protocol, the values are references to other CRDTs: either a
LWWRegister or another ORMap. The keys, however, need to be encrypted
to maintain confidentiality. The unique ID also has to be protected against
Byzantine replicas [Kle22]. If the replica itself is responsible for generating a
new random ID, a Byzantine replica can easily generate duplicate IDs. Therefore,
we will generate IDs deterministically based on the update. The ID of a new
key-value pair is derived from the secret key linked to the ORMap and the key
from the key-value pair. Since it must be possible to remove and add a key-value
pair again, we also add a timestamp to each key-value pair. This timestamp is
also used as input to derive the ID. There is no need to store this ID, every replica
that has access to the secret key can compute the ID itself. Since the IDs and
keys are therefore only available to replicas that have access to the secret key,
replicas without access do not know when two items have the same ID or key,
and they will therefore not be able to propagate the merge to the child CRDTs.
Instead, two copies of these similar key-value pairs will be stored in the ORMap,
and any other replica which does have access to the secret key can perform the
merge later. This derived ID is also the value of the key-value pair: i.e., it is the
ID of the child CRDT. Since this ID is only available to replicas with access to the
secret key, the structure of the data is also hidden from replicas that do not have
access. This means that a replica that has no access at all, will only be able to see
how many individual ORMaps and LWWRegisters there are, without knowing
how they belong together.

Signatures. Only users who have been given access to the secret key should be
able to modify data. For this reason, every update has to be signed by the private
key of the CRDT. For a LWWRegister one signature is sufficient. An ORMap will
have one signature per key-value pair in the observed- and removed-set. Since
the public key is also included in the CRDT, anyone can verify that an update
came from a party with access to the private key. These signatures also ensure it
is safe to use a public key as ID for the CRDT in a context with Byzantine actors.
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You cannot reuse the same ID if you do not have access, and if you do have access,
using the same ID will lead to a merge of those two CRDTs. This is equivalent to
a write to the first CRDT, which you are allowed to do as you do have access to
the private key.

Each update is also signed by the private key of the user who makes the update.
This way, each update is attributable to the user who made the edit. The first
signature (σsk in Figure 4.2b) with the private key of the CRDT proves that
you have the right to modify it, the second signature (σa in Figure 4.2b) with
your own private key proves who you are. If attributability is not required, it is
possible to leave out the second signature with no other changes to the protocol.

4.3.2 Modified Merkle Patricia Trie

All individual CRDTs are stored inside a Modified Merkle Patricia Trie [Woo14]
(Figure 4.2c). A Patricia Trie is a tree-shaped data structure in which items
associated with a key with a common prefix, will share the same path in the
tree for that prefix. A Merkle-tree [Mer88] is a tree-shaped data structure of
hashes, in which the hash of a parent node is based on the hash of the hashes
of the child nodes. This way, large data structures can quickly be compared or
verified based on the hash in the root node of the tree. A Modified Merkle Patricia
Trie combines both a Patricia Tree and a Merkle-tree. Each node in the trie also
carries a hash value. This data structure is also used by Ethereum to store the
state of the Ethereum blockchain [Woo14]. In Figure 4.2c, the trie consists of
two items with id 0x12 and 0x1a (the ids of the CRDTs in Figure 4.2b). As they
share a common prefix, they are under the same internal node 0x1.

The key to insert a CRDT into the trie is the ID of the CRDT. Since the ID
is also a public key, they are random, and therefore the trie will be relatively
well-balanced. By using the Merkle-tree, two replicas can efficiently exchange
updates between each other. The replicas can compare the root hash of the trie.
If the hashes match, the two tries are exactly the same, and no replication is
required. If the hashes do not match, the replicas will descend in the tree and
send the hashes of the next level in the tree. This process continues until it
reaches the leaves of the tree. At this time, the updated CRDTs can be sent and
merged. This process is similar to the replication process in OWebSync [JLJ21].

4.3.3 Key derivation and rotation

In the previous two sub-sections, we created a trie of individual CRDTs which
contain signatures and are partially encrypted by the respective private and
secret keys of the CRDT. The secret key can be derived from the private key
by using a key derivation function, for example, HKDF [KE10]. This leads to
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one encryption key to manage per CRDT. However, as already indicated in the
paragraph on ORMaps, the key material for children is derived from the parent
key. Instead of directly deriving the ID for a key-value pair in an ORMap, we
derive a private key. We can then use this private key to derive the secret key
and public key. This public key is also the ID. A user who has access to the full
document tree only needs access to the private key of the root and can derive
all other keys from this single key. This makes sharing a document and key
management easy. An example of this derivation process is shown in Figure 4.2d.

When access is revoked from a user, the encryption key will have to be updated.
Otherwise, that user still has access to the secret key, and would still be able to
read and write. A new private key is derived from the parent private key, the key
(from the path in the tree), and the current timestamp. Because the timestamp
will be different, a brand new private key is generated and the CRDT can be
re-encrypted with the corresponding secret key. Since the private key is changed,
the public key will also be different and the CRDT will be stored under a different
ID in the trie. Only users that have access to the private key of the parent are
able to do a key rotation. The new key will be derived from this parent key and
a signature with the parent key is required. Key rotations for the root are not
possible, as there is no parent key. The owner of the document should therefore
only delegate access to sub-trees instead of the root directly.

Because these CRDTs end up in different places of the trie, they can co-exist
for a while. Replicas that are not yet informed about the key rotation can still
perform updates on the old version, while other replicas can do updates on the
new version. Any replica that has access to both the old and the new version
knows those two CRDTs are in fact the same CRDT and can perform a merge
operation as usual. Replicas that do not have access to both private keys are
unaware they are the same CRDT and will treat them as two separate CRDTs.

4.3.4 Global time

Common wisdom in the field of distributed systems is that you cannot have a
global time in a distributed system. Although this is true, a coarse-grained global
timestamp is still possible. The Ethereum blockchain, for example, includes a
timestamp in every block header. In the Geth implementation, a timestamp of
a new block has to be larger than the timestamp of the previous block and less
than 15 seconds in the future of the current time of a replica. Similar timestamps
and rules are present in other blockchains.

We use similar rules for the timestamps used in our protocol. A timestamp may
only be at most one minute in the future, otherwise, the replica will not accept it
and stop communication with the other replica. Replicas need to keep their clocks
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correct. These days, internet-connected devices automatically synchronize their
time with an internet time server and are generally correct within one minute.

A Byzantine replica can reuse timestamps without problem since the lexico-
graphic order of the hash value will then be used as a tie-breaker. Such a replica
can also get an edge over other replicas by always using a timestamp one minute
in the future. Because its timestamps are generally larger, when an update
is done simultaneously, its update is more likely to win in the last-writer-wins
conflict resolution. This is however only possible for Byzantine replicas that have
access to the private key, i.e., replicas with write access. Replicas without access
can never change anything. Hence, such replicas do not get to choose a timestamp.
This edge that a Byzantine replica has is only present for short intervals. On
larger intervals, the correct user intention will be kept. For example, when user
A makes a change in the morning, and another user B changes the same data
in the afternoon, the change of user B will be chosen. User A can of course keep
increasing the timestamp of his update, but this is equivalent to a new write by a
replica that has write access, so this is allowed.

4.3.5 Discussion

This section presented a novel protocol for secure and confidential CRDTs. Since
replication is state-based, there are no client-specific identifiers kept for the
replication. Replicas do not need to know every other replica. Only the replica
modifying the access control policy has to know the public key of all users with
read and write access. This makes the protocol extremely robust against network
failures and long-term disconnects [JLJ21]. Centralized servers which are only
there to improve the availability and durability of the replication between clients,
do not need any private key material to function.

The current protocol will keep both old and new versions of a CRDT after a key
rotation forever. This is not required, once the new version is created, the old
one can be removed. With concurrent edits, it is possible that the old version will
resurface again, but after each merge with the new version, it is removed again.
After some time, all replicas will know about the key rotation and all updates
will be applied to the new version and the old version will never resurface. If
the replica that has been revoked access by the key rotation makes an update, it
will not be merged in the new version, but simply be discarded. This is possible
due to the coarse-grained timestamps. So, there is a small interval of less than
a minute in which its updates will still be accepted. For most application cases
that already opted for eventual consistency, this is acceptable.

To be able to determine whether an update from an old version of the CRDT
should be merged with the new version, a list of all users having access to it is
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required. This is a list of public keys and only needs to be kept at the point in
the JSON tree where you give access to other users. This can be encrypted as
well, as only replicas with access to the actual data will have to use the list to
potentially merge data updates across key updates. Replicas that decide to rotate
a key can also use this list to determine who should have access to the new key.
Replicas with no access to the data do not use this list and instead rely on the
key-pair of each CRDT to determine whether access was correctly granted.

The only cryptographic protocols used are plain symmetric encryption (e.g., AES),
public-key cryptography (e.g., RSA or ECDSA), and hashing (e.g., SHA256).
Furthermore, we use a key derivation algorithm based on these protocols
(HKDF). As these are older, well-tested protocols, we can be more certain of
their correctness and safety. There are also more well-tested and maintained
libraries available, making it possible to implement our protocol in multiple
languages. Also, the availability of hardware support for some of these will be
good for the performance on client devices.

4.4 Evaluation

We implemented the protocol in a JavaScript-based web application, without
browser plugins. For our experiments, we launched up to 30 virtual machines in
the Azure public cloud (F2s_v2 with 2 vCPU and 4 GB RAM) in the same data
center. To emulate geographically distributed users, we use the Linux tc tool
to increase the network latency between each VM to an average of 100 ms with
50 ms jitter. Each VM contains one Chromium browser. Every client makes one
write every second. We are interested in the interactive latency, i.e., after one
client makes an update, how long does it take for other clients to receive it. To
compare the overhead of our encrypted and Byzantine fault-tolerant approach to
a regular approach without security, we also performed the same experiments
with the open-source version of OWebSync. OWebSync [JLJ21; JLJ22a] is a
state-based CRDT framework, in which all clients are trusted.

The performance results are shown in Table 4.1. We compare the protocol
from this chapter (secure CRDTs) with OWebSync (baseline) for three different
numbers of active replicas. With 30 different replicas, each making one request
per second, the average latency is 1.6 seconds before an update is visible to
other replicas. With smaller network sizes, the latency is lower. OWebSync
has a much lower latency, of 0.5 seconds, even for larger network sizes as no
cryptographic operations are required there. Overall, the latency is low enough
to be considered interactive when multiple users are collaboratively working on
the same document. The storage overhead of the protocol ranges from 16 to 19
times, compared to the size of the raw data. For OWebSync this overhead is
only 4 times. The overhead comes from the extra metadata required for state-
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Table 4.1: Performance characteristics of the proposed protocol, compared to a
baseline protocol without any security.

# replicas 10 20 30

Latency [s] secure CRDTs 0.62 0.76 1.59
baseline 0.56 0.50 0.54

Storage overhead secure CRDTs ×16 ×16 ×19
baseline ×4 ×4 ×4

Bandwidth [kbps] secure CRDTs 229 806 830
baseline 231 1382 4160

CPU usage [%] secure CRDTs 19 56 72
baseline 13 42 83

based CRDTs, but also from the signatures and encrypted data. This leads to a
bandwidth usage of 830 kbps for 30 replicas, which is readily available on any
mobile network. Interestingly, the network usage for our baseline, OWebSync
is a factor 5 higher, even though the actual storage size is much lower. The
explanation for this is two-fold. First, OWebSync uses a Merkle-tree which is
based on the actual tree-structure of the data, while our protocol uses a much
better balanced Merkle-Patricia Trie. This allows replicas to propagate updates
more fine-grained, i.e., when only a leaf in the JSON data changes, we do not
need to replicate the intermediate nodes of the JSON tree. Second, as the latency
of OWebSync is much better, it does more traversals of the Merkle-tree, while
our protocol does less as more updates can be batched in the same tree traversal
given the higher latency. This second point also explains the discrepancy in CPU
usage for the network with 30 replicas, as we would expect that our protocol
always has a higher CPU usage compared to a solution without any signatures
and cryptography.

To conclude, we have shown that our protocol for secure CRDTs, which tolerates
Byzantine replicas, and which supports very fine-grained access control by
encrypting every field in every (sub)-document with a different key, can be used
for interactive, collaborative document editing. The price to pay is a significant
increase in the size of the data (up to 19 times).

4.5 Related work

This section covers related work that also tries to reach eventual consistency in
an adversarial context.
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Snapdoc [KKB19] is a collaborative peer-to-peer text editing protocol. New
replicas can be added to the network by only sending a snapshot of the data,
including a cryptographic proof of the integrity. They can keep the edit history
private for new replicas, but new replicas can still attribute all changes, as well
as verify the integrity. This is made possible by using RSA accumulators and
Merkle-proofs. However, the new replica can only accept operations that are
created after the snapshot. When an operation, not included in the snapshot, was
created before or concurrent to a snapshot, the new replica will have to request a
new snapshot and do the verification process again.

In [LLP20], Linde, Leitão, and Preguiça present a system that protects against
rational misbehaving clients in causal consistency. However, servers are
considered trusted, and the focus is on detecting the Byzantine client, rather
than avoiding divergence at all.

In [Bar+21], Barbosa, B. Ferreira, J. Marques, Portela, and Preguiça extend
standard CRDTs with cryptographic protocols. The paper focuses on a client-
server context, where servers are unable to see the actual data. The same
approach can most likely also be used in a peer-to-peer setting. However,
the provided algorithms only work as long as the same cryptographic key is
used. Switching to a new key will require coordination between the replicas.
Furthermore, the approach focuses on confidentiality and does not tolerate an
active Byzantine replica.

In [Kle22], Kleppmann shows how operation-based CRDTs can be adapted to
tolerate Byzantine replicas. The paper lists four techniques that are together
sufficient to make most operation-based CRDT tolerate Byzantine replicas.
The techniques are: constructing a hash-graph of all updates, with links to
predecessor; ensuring eventual delivery, which could be done by using the hash
graph; constructing unique IDs, which cannot be controlled by an attacker;
and ensuring that replicas only look at the predecessors of an update to check
the validity of it. However, the paper only focuses on maintaining eventual
consistency, and not on confidentiality.

Secure Scuttlebutt [Tar+19] is a peer-to-peer event-sharing protocol, using
individual append-only logs. However, strong eventual consistency can only
be reached on replicas that subscribe to the same logs. Furthermore, the append-
only logs will grow without bounds.

4.6 Conclusion and future work

In this chapter, we presented a protocol for secure state-based CRDTs. We have
shown that Strong Eventual Consistency can be reached even in settings with
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Byzantine replicas. We have also shown that a key rotation does not have to
break Strong Eventual Consistency and that you can do this concurrently, while
other users are still making updates with the old keys. The key idea to support
this is to store all CRDTs inside a Merkle-Patricia Trie, and only allow replicas
that have access to both the old and the new secret key to merge two different
versions of the same CRDT.

In future work, we will extend this protocol with online pruning to remove old
versions which are not necessary anymore from the trie. Arrays are also not yet
supported. The current protocol uses basic, state-of-practice cryptography. More
research is required to evaluate whether newer cryptography protocols such as
attribute-based encryption [SW05] can offer any benefits.
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This chapter concludes this dissertation. We begin by summarizing the
contributions presented in the previous chapters. Then we discuss the limitations
of our proposed solutions and present opportunities for future work.

5.1 Summary of contributions

This dissertation has addressed several challenges in the scope of client-centric
replication. In this section, we provide an overview of our contributions toward
solving these challenges. We presented three major contributions in the form of
three client-centric replication protocols for different environments with different
trust and consistency levels. All three protocols have been implemented in a
browser-based middleware. In summary, this dissertation offers the following
contributions:

1. A state-based Conflict-free Replicated Data Type protocol that
supports fine-grained delta-merging and conflict resolution. To
counteract the problems with operation-based approaches and using client
identifiers, we opted to use state-based CRDTs which are much more
robust and resilient to network failures and which can achieve constant
performance over time. State-based CRDTs were not previously used on the
client, as the size of the state is typically much larger than the size of the
operations, making it unsuitable for low-bandwidth connections. Existing
delta-state-based approaches tried to solve this problem but at the same
time re-introduced the problems of operation-based approaches by using
vector clocks and client identifiers. We proposed a new state-based approach
that can dynamically determine which fine-grained parts of the data need
to be sent to merge correctly by using a Merkle-tree on top of the data
structure. This approach eliminates the need for client identifiers or vector
clocks. Hence it can achieve constant performance, without deterioration
over time.

2. A lightweight leaderless Byzantine Fault Tolerant consensus
protocol. Traditional BFT consensus protocols based on a leader are
not suitable for client-centric replication, as they require a stable leader
with enough resources to be performant. We proposed a leaderless protocol
in which both the state as well as the consensus votes are replicated over
a state-based gossip protocol. This replication method is highly robust,
as consensus votes can be replicated through multiple hops and routes to
all other replicas. This also naturally allows batching of many different
consensus votes in a single network request. In contrast to existing
permissioned BFT frameworks such as Hyperledger Fabric, this setup
is lightweight in terms of infrastructure requirements.
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3. A Byzantine Fault Tolerant Conflict-free Replicated Data Type
protocol. State-of-the-art CRDT protocols for collaborative applications
mostly assume a trusted environment. This is also the case for the first
contribution of this dissertation (Chapter 2). We argue that a peer-to-
peer client-centric application can benefit from adding untrusted servers or
other untrusted clients in terms of availability, performance and robustness.
However, as replicas are no longer trusted, existing protocols cannot be used,
because strong eventual consistency is no longer guaranteed. We proposed
a novel CRDT protocol that guarantees strong eventual consistency, even in
the presence of Byzantine faults. This includes also fine-grained encryption
per field in every sub-document to preserve the confidentiality and integrity
of all data. Furthermore, membership changes, i.e., who can read and write
which parts of the document, are possible without breaking strong eventual
consistency, leaking extra data, or losing concurrent updates.

These three contributions address the challenges and goals presented in the
introduction, offering solutions across different environments.

We achieved resilient replication by opting for a state-based approach instead of
working directly with the updates. This eliminates the need to determine which
updates must still be sent to certain replicas and which can be discarded. We
achieved interactive replication by using Merkle-trees to quickly calculate a delta-
state to be sent over to the other replicas. This way, we still only need to send a
small update, similar to operation-based approaches. Recovery is also efficient,
as the same replication process of traversing the Merkle-tree once can be used
to fully replicate all updates. Our second contribution, BeauForT (Chapter 3),
provides strong consistency. This means that at least a supermajority of the
replicas has to be online to achieve interactive performance. However, short-term
failures are no longer a problem, as the protocol can quickly recover from them
with the same replication protocol as in the normal scenario.

Our protocols have limited storage overhead and do not suffer from metadata
explosion. A state-based approach has the benefit that we no longer need client
identifiers, vector clocks, or totally ordered logs to assist with the replication,
as is the case for operation-based or delta-state-based approaches. The current
state and some metadata are enough to reliably replicate the data. By keeping
the metadata size constant over time, the proposed protocols maintain consistent
performance, without degradation due to increased metadata or log size.

5.2 Limitations and future directions

In this dissertation, we presented several contributions in the scope of client-
centric replication. We showed that our solutions solve the typical problems of
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local-first software and blockchains on a scale with tens of client replicas. They
provide acceptable performance in optimal conditions. However, they outperform
the state-of-the-art of other client-centric collaborative software in more realistic
conditions, where short-term network and device failures are common. Our
solutions are much more robust and resilient in such unstable environments.
This section discusses the current limitations and future research directions to
overcome these.

Unclear conflict resolution

Chapter 2 and Chapter 4 offer something that resembles last-writer-wins conflict
resolution towards application developers. In Chapter 3, no conflict resolution
is present, instead strong consistency is achieved for every update to make sure
only one state-transition is happening. This is conflict-avoidance, rather then
conflict-resolution.

The last-writer-wins conflict resolution makes it easy for the application developer,
as the application code will never have to deal with conflicts itself. However,
there are choices to be made by the developer that can affect the actual conflict
resolution. Since we are dealing with a tree-based structure, developers can
choose to construct a very fine-grained tree, with small leaf values, or they can
go more coarse-grained, with large leaf values. The last-writer-wins conflict
resolution is only applied to the leaf values. A less fine-grained tree with
more data stored as strings in the leafs means that there is a higher chance
that a concurrent modification can lead to one of the updates being lost. The
intermediate levels in the tree maintain an add-wins conflict resolution in which
a concurrent add and remove will result in the item being present. However, this
resolution is only the case for add and removes on the same level in the tree, if the
concurrent remove was for a higher level in the tree, then the result will be that
the whole subtree is removed, even though there are more recent changes in lower
levels of the tree. This violates the last-writer-wins strategy that we imposed
earlier. From a user’s point of view, this can be confusing. Most of the time, they
will experience last-writer-wins conflict resolution, with some exceptions based
on how the application developer structured the tree. This trade-off is both for
usability for the application developer, as well as for performance reasons. The
fact that a whole sub-tree is removed, including future updates deeper in the tree,
means that we only have to store a single tombstone even though the sub-tree
itself could be very large.

Potential solutions. Instead of using a LWWRegister CRDT, we can extend the
protocols to also include Multi-Value Registers [Sha+11b] (MVRegister). This
CRDT represents a single value, just like a LWWRegister. However, when two
conflicting operations happen, both values are kept in the MVRegister and it is
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up to the application developer to select the correct value to keep and which one
to discard (or to set a new value based on an application-level merge of the two
values). The developer can also opt to delegate this choice to the user. While
this allows for more transparent and application-specific conflict resolution, the
application developer will now have to deal with conflict resolution.

Limited scalability in terms of participants

All three protocols discussed in this dissertation are limited to a small number
of replicas, namely tens of replicas to at most 100 replicas. This is due to the
fact that all data is replicated on all replicas. Traditional server-centric cloud
applications would replicate data over a small number of servers, typically 3
or 5. These servers are normally located within one or multiple data centers
where the replicas can communicate with each other over a high-bandwidth
network connection. Many clients can connect to these servers to read and write
data. Keeping all data replicated on all mobile client devices forms an inherent
scalability problem in the system. Scaling to more replicas requires increased
computational power, network bandwidth, or lower latency.

Potential solutions. We can expect that these requirements will become
available in the long term future, as computing devices become more and
more powerful. The last requirement, more network bandwidth with lower
latency, however, might be reached much sooner with the introduction of 5G
networks or even 6G networks. Having a low-latency, high-bandwidth network
available would greatly improve the performance of our proposed solutions. This
is especially the case for BeauForT (Chapter 3), in which global consensus is
required for every write operation. This means that a supermajority of all replicas
needs to be aware of the decision of a supermajority of the replicas which requires
a lot of communication. The performance of the system is therefore directly
dependent on the number of replicas and the latency of the network between the
replicas. For the eventual consistent protocols (Chapter 2 and Chapter 4) the
requirement is much lower as updates can be directly applied locally. However,
for collaborative applications, the latency of the network is still a major factor in
the performance of the system. With the introduction of 5G and 6G networks, we
can expect that the scalability of our proposed solutions will increase as they are
now mostly limited by the network latency. Since all of our solutions use a gossip
protocol to replicate the data over multiple hops, the latency of the network is a
major factor in the performance of our systems.

Besides these advancements in available resources, namely network latency,
network bandwidth, and computational power, another way to scale our solutions
is to use a hybrid approach. In a hybrid approach, we move away from the client-
centric model in which the clients themselves directly act as a replica. Instead,
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we can use a few large-scale servers or edge devices, ideally closely located to
the clients. Each device can then service many low-end clients in a local area.
This way the data only has to be replicated to tens of devices, which our solutions
are currently capable of, while many more clients can access the data. Since our
protocols can scale to much more replicas than the typical 3 to 5 replicas of a
centralized cloud solution, data can be located closer to the clients, even when
clients are distributed globally. This hybrid approach brings lower latency and
higher availability to the clients compared to a traditional cloud-based approach,
while still being able to scale to a large number of clients compared to the native
client-centric approach.

Another possible way to improve the scalability is to tailor the protocol to the
specific needs of the application. For example, in Chapter 3, strong consensus
is required for every change. However, we could allow the application developer
to choose which properties are required for each operation. In the loyalty use
case, we could relax the consistency requirements when handing out loyalty
points to customers. They do not have to be confirmed strongly consistent quickly,
as is required at checkout to redeem them. Instead, they could be eventually
consistent at first and become strongly consistent confirmed later in batch.

Limited scalability in terms of data size

A second limitation of our solutions is the scalability in terms of data size. All
experiments were conducted with small data sets, expressed in kilobytes and
megabytes. The data size is of course limited to the available storage space on
the client devices and the network bandwidth between the replicas. However,
the current limitations are mostly due to the use of a browser as the underlying
platform. All discussed protocols in this dissertation are implemented in a
JavaScript-based framework, which is executed in a browser. Storing large
amounts of data in the browser is not yet feasible today. Although browsers
support standardized APIs for data storage, such as IndexedDB, its performance
is still not sufficient for the workload required by our protocols. Our protocols
store tree-shaped data in a flat structure of many key-value pairs. Updating a
single leaf in the tree requires updating all nodes on the path from the leaf to the
root, amplifying the number of writes on the underlying database.

Potential solutions. Moving away from a purely browser-based solution can
improve performance when handling larger amounts of data. It can also be
expected that browser vendors will improve the performance of their storage
APIs in the future, or that new storage APIs are standardized and adopted. Again,
a hybrid approach can be used here as well to scale our solutions. In a hybrid
approach, servers, and edge devices can be used to store all of the data, while the
actual mobile client device only stores a small part of it. This is very similar to
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what, for example, Microsoft OneDrive does today: some files are stored on the
device and are therefore available offline, and other files are stored on the server
and are only available online. But once accessed, the file is downloaded to the
device and is available offline in the future. The problem then becomes deciding
which part of the data to store locally. Note that this part of the data is still an
authoritative copy, not a cached version. Clients can make edits to it offline and
these edits have to be replicated to the other peers.

The future of client-centric replication

In this dissertation, we presented three different protocols for client-centric
replication. All three protocols have limited scalability in terms of participants
and data size. Their ideal use case is collaborative applications with a small
number of participants where both real-time interactivity is required, as well
as resilience to short-term network and device failures, and possibly long-term
offline usage. However, expecting that clients are always online is unrealistic.
While current networking abilities such as 4G and 5G make it possible for a
mobile device to be online most of the time, there are still many situations
where clients are not online such as tunnels, airplanes, trains, rural areas, etc.
Furthermore, a client might be online but battery life is limited, which means
it is not desirable to keep a mobile device actively responding to requests from
other replicas. A mix of mobile computing devices, local edge devices such as
home routers, fog devices for example hosted by the ISP, and cloud servers is
probably the better solution for the future. This becomes a hierarchical peer-
to-peer system, in which some peers can act as super-peers, connected to many
other peers, and other peers such as mobile devices are connected to a single
super-peer and other local mobile clients. In this case, all advantages of local-
first software are still present as the local clients still act as fully authoritative
replicas. However, the peers closer to the cloud can be used to synchronize the
data between the different clients more efficiently and more reliably. This is
especially the case when the clients are not online at the same time. There is,
however, no need for the peers to have any inside knowledge of the data, only the
clients need to be aware of the content of the data. These super-peers are simply
used as a synchronization mechanism between the clients. This is the approach
taken in Chapter 4 in which we presented a CRDT protocol that can work with
untrusted replicas that do not have access to the actual data.

In conclusion, this dissertation explored client-centric replication not as the end
goal, but as a promising approach to be used in conjunction with cloud-based
server-centric approaches and the various edge- and fog-based approaches in
between. A hybrid approach, especially for collaborative applications, can bring
performance, resilience, and confidentiality due to the local-first approach, as
well as availability and scalability by using cloud servers and edge devices.
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